Using Fractal Dimensions for Characterizing Intra-urban Diversity: The Example of Brussels

The objective of this paper is to compare fractal-based parameters calculated by different fractal methods for urban built-up areas and to link the observed spatial variations to variables commonly used in urban geography, urban economics, or land-use planning. Computations are performed on Brussels, Belgium. Two fractal methods (correlation and dilation) are systematically applied for evaluating the fractal dimension of built-up surfaces; correlation is used to evaluate the fractal dimension of the borders (lines). Analyses show that while fractal dimension is ideal for distinguishing the morphology of Brussels, each estimation technique leads to slightly different results. Interesting associations are to be found between the fractal dimensions and rent, distance, income, and planning rules. Despite its limitations, fractal analysis seems to be a promising tool for describing the morphology of the city and for simulating its genesis and planning. The model is robust: it replicates the urban spatial regularities and patterns, and could hence fruitfully be integrated into intra-urban simulation processes.

[1]  M Batty,et al.  Preliminary Evidence for a Theory of the Fractal City , 1996, Environment & planning A.

[2]  M. A. F. Gomes Geometrical aspects in the distribution of languages and urban settlements , 2001 .

[3]  M. Goodchild,et al.  The Fractal Nature of Geographic Phenomena , 1987 .

[4]  Fractal Geometry and Spatial Phenomena: A Bibliography (91-1) , 1991 .

[5]  S. Arlinghaus Fractals Take a Central Place , 1985 .

[6]  B. Hillier,et al.  The Social Logic of Space , 1984 .

[7]  Pierre Frankhauser,et al.  The fractal approach. A new tool for the spatial analysis of urban agglomerations , 1998, Population.

[8]  Pierre Frankhauser,et al.  La fractalité des structures urbaines , 1994 .

[9]  Pierre Frankhauser,et al.  Amnits urbaines et priurbaines dans une aire mtropolitaine de forme fractale , 2002 .

[10]  J. Cavailhès,et al.  La ville périurbaine , 2003 .

[11]  T. L. Jeannic Une nouvelle approche territoriale de la ville , 1996 .

[12]  Bill Hillier,et al.  Space is the machine , 1996 .

[13]  Guoqiang Shen,et al.  Fractal dimension and fractal growth of urbanized areas , 2002, Int. J. Geogr. Inf. Sci..

[14]  Masahisa Fujita,et al.  Urban Spatial Structure with Open Space , 1983 .

[15]  Edward L. Glaeser,et al.  The Economics of Cities , 1997 .

[16]  Economistes et historiens , 1950 .

[17]  Michael F. Barnsley,et al.  Fractals everywhere , 1988 .

[18]  F. Goffette-Nagot Urban spread beyond the city edge , 2000 .

[19]  J. Huriot,et al.  Economics of Cities , 2000 .

[20]  Roger White,et al.  Cellular Automata and Fractal Urban Form: A Cellular Modelling Approach to the Evolution of Urban Land-Use Patterns , 1993 .

[21]  Michael Batty,et al.  Fractal Cities: A Geometry of Form and Function , 1996 .

[22]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .