Nontrivial Solutions for a (p, q)-Type Critical Choquard Equation on the Heisenberg Group

[1]  M. Ragusa,et al.  Nonnegative solution of a class of double phase problems with logarithmic nonlinearity , 2022, Boundary Value Problems.

[2]  P. Pucci,et al.  Critical equations with Hardy terms in the Heisenberg group , 2022, Rendiconti del Circolo Matematico di Palermo Series 2.

[3]  Chao Ji,et al.  Multi-bump solutions for the nonlinear magnetic Choquard equation with deepening potential well , 2022, Journal of Differential Equations.

[4]  Vicentiu D. Rădulescu,et al.  Nonlinear eigenvalue problems for the (p,q)–Laplacian , 2021 .

[5]  Patrizia Pucci,et al.  Existence for fractional (p,q) systems with critical and Hardy terms in RN , 2021 .

[6]  Xingsong Zhang,et al.  The Equivalence of Operator Norm between the Hardy-Littlewood Maximal Function and Truncated Maximal Function on the Heisenberg Group , 2021, Journal of Function Spaces.

[7]  V. Ambrosio,et al.  A multiplicity result for a (p, q)-Schrödinger–Kirchhoff type equation , 2021, Annali di Matematica Pura ed Applicata (1923 -).

[8]  Chao Ji,et al.  Concentration phenomena for nonlinear magnetic Schrödinger equations with critical growth , 2021 .

[9]  Chao Ji,et al.  Ground state solutions for a generalized quasilinear Choquard equation , 2021, Mathematical Methods in the Applied Sciences.

[10]  Vicentiu D. Rădulescu,et al.  Fractional double-phase patterns: concentration and multiplicity of solutions , 2020 .

[11]  P. d’Avenia,et al.  Multiplicity and Concentration Results for a Magnetic Schrödinger Equation With Exponential Critical Growth in ℝ2 , 2020 .

[12]  P. Pucci,et al.  Existence Problems on Heisenberg Groups Involving Hardy and Critical Terms , 2020, The Journal of Geometric Analysis.

[13]  C. Tintarev Concentration Compactness , 2020 .

[14]  P. Pucci,et al.  Existence for (p, q) critical systems in the Heisenberg group , 2019, Advances in Nonlinear Analysis.

[15]  P. Pucci,et al.  (p,q)systems with critical terms inRN , 2018, Nonlinear Analysis.

[16]  Vicenţiu D. Rădulescu,et al.  (p,2)-equations asymmetric at both zero and infinity , 2018, Advances in Nonlinear Analysis.

[17]  Qinglun Yan,et al.  Infinitely many solutions for quasilinear Schrödinger equation with critical exponential growth in RN , 2016 .

[18]  R. Agarwal,et al.  Study on the generalized (p,q)$(p,q)$-Laplacian elliptic systems, parabolic systems and integro-differential systems , 2016 .

[19]  Caisheng Chen Multiple solutions for a class of quasilinear Schrödinger equations in ℝN , 2015 .

[20]  Giuseppina Autuori,et al.  Existence of entire solutions for a class of quasilinear elliptic equations , 2013 .

[21]  G. Figueiredo Existence of positive solutions for a class of p&q elliptic problems with critical growth on RN , 2011 .

[22]  Stefan Ivanov,et al.  Extremals for the Sobolev Inequality and the Quaternionic Contact Yamabe Problem , 2011 .

[23]  E. Kaniuth A Course in Commutative Banach Algebras , 2008 .

[24]  D. Vassilev EXISTENCE OF SOLUTIONS AND REGULARITY NEAR THE CHARACTERISTIC BOUNDARY FOR SUB-LAPLACIAN EQUATIONS ON CARNOT GROUPS , 2006 .

[25]  Nicola Garofalo,et al.  ISOPERIMETRIC AND SOBOLEV INEQUALITIES FOR CARNOT-CARATHEODORY SPACES AND THE EXISTENCE OF MINIMAL SURFACES , 1996 .

[26]  Paolo Marcellini Regularity and existence of solutions of elliptic equations with p,q-growth conditions , 1991 .

[27]  V. Zhikov,et al.  AVERAGING OF FUNCTIONALS OF THE CALCULUS OF VARIATIONS AND ELASTICITY THEORY , 1987 .

[28]  Paolo Marcellini On the definition and the lower semicontinuity of certain quasiconvex integrals , 1986 .

[29]  Pierre-Louis Lions,et al.  The concentration-compactness principle in the Calculus of Variations , 1985 .

[30]  P. Lions The concentration-compactness principle in the calculus of variations. The locally compact case, part 1 , 1984 .

[31]  E. Stein,et al.  Estimates for the complex and analysis on the heisenberg group , 1974 .

[32]  L. Hörmander Hypoelliptic second order differential equations , 1967 .

[33]  P. Pucci,et al.  On the concentration–compactness principle for Folland–Stein spaces and for fractional horizontal Sobolev spaces , 2022, Mathematics in Engineering.

[34]  P. Pucci,et al.  Entire solutions for some critical equations in the Heisenberg group , 2022, Opuscula Mathematica.

[35]  K. Fieseler,et al.  Concentration Compactness: Functional-analytic Grounds And Applications , 2007 .

[36]  Zhikov On Lavrentiev's Phenomenon. , 1995 .

[37]  E. Lanconelli,et al.  Frequency functions on the Heisenberg group, the uncertainty principle and unique continuation , 1990 .