A Parallel Structured Divide-and-Conquer Algorithm for Symmetric Tridiagonal Eigenvalue Problems
暂无分享,去创建一个
Shengguo Li | Jose E. Roman | Yutong Lu | Xia Liao | Yutong Lu | Xiangke Liao | Shengguo Li | J. Román
[1] Paolo Bientinesi,et al. High-Performance Solvers for Dense Hermitian Eigenproblems , 2012, SIAM J. Sci. Comput..
[2] James Demmel,et al. Algorithm 880: A testing infrastructure for symmetric tridiagonal eigensolvers , 2008, TOMS.
[3] Ming Gu,et al. Stable and Efficient Algorithms for Structured Systems of Linear Equations , 1998, SIAM J. Matrix Anal. Appl..
[4] Wolfgang Hackbusch,et al. A Sparse Matrix Arithmetic Based on H-Matrices. Part I: Introduction to H-Matrices , 1999, Computing.
[5] Chao Yang,et al. 623 Tflop/s HPCG run on Tianhe-2: Leveraging millions of hybrid cores , 2016, Int. J. High Perform. Comput. Appl..
[6] Robert A. van de Geijn,et al. SUMMA: scalable universal matrix multiplication algorithm , 1995, Concurr. Pract. Exp..
[7] Xiangke Liao,et al. An improved divide-and-conquer algorithm for the banded matrices with narrow bandwidths , 2016, Comput. Math. Appl..
[8] Jean-Yves L'Excellent,et al. Improving Multifrontal Methods by Means of Block Low-Rank Representations , 2015, SIAM J. Sci. Comput..
[9] Jie Liu,et al. New fast divide‐and‐conquer algorithms for the symmetric tridiagonal eigenvalue problem , 2015, Numer. Linear Algebra Appl..
[10] Torsten Hoefler,et al. Red-blue pebbling revisited: near optimal parallel matrix-matrix multiplication , 2019, SC.
[11] Jaeyoung Choi. A new parallel matrix multiplication algorithm on distributed-memory concurrent computers , 1998, Concurr. Pract. Exp..
[12] James Demmel,et al. Minimizing Communication in Numerical Linear Algebra , 2009, SIAM J. Matrix Anal. Appl..
[13] Jack Dongarra,et al. Distributed-memory lattice H -matrix factorization , 2019, Int. J. High Perform. Comput. Appl..
[14] James Demmel,et al. ScaLAPACK: A Portable Linear Algebra Library for Distributed Memory Computers - Design Issues and Performance , 1995, Proceedings of the 1996 ACM/IEEE Conference on Supercomputing.
[15] James Demmel,et al. Communication-Optimal Parallel 2.5D Matrix Multiplication and LU Factorization Algorithms , 2011, Euro-Par.
[16] Xuebin Chi,et al. An Accelerated Divide-and-Conquer Algorithm for the Bidiagonal SVD Problem , 2014, SIAM J. Matrix Anal. Appl..
[17] J. Bunch,et al. Rank-one modification of the symmetric eigenproblem , 1978 .
[18] Thomas Kailath,et al. Fast Gaussian elimination with partial pivoting for matrices with displacement structure , 1995 .
[19] Jie Liu,et al. An efficient hybrid tridiagonal divide-and-conquer algorithm on distributed memory architectures , 2016, J. Comput. Appl. Math..
[20] Stanley C. Eisenstat,et al. A Divide-and-Conquer Algorithm for the Symmetric Tridiagonal Eigenproblem , 1995, SIAM J. Matrix Anal. Appl..
[21] Mark Tygert,et al. Fast algorithms for spherical harmonic expansions, II , 2008, J. Comput. Phys..
[22] Geoffrey C. Fox,et al. Matrix algorithms on a hypercube I: Matrix multiplication , 1987, Parallel Comput..
[23] Ming Gu,et al. Studies in numerical linear algebra , 1993 .
[24] Lynn Elliot Cannon,et al. A cellular computer to implement the kalman filter algorithm , 1969 .
[25] A Marek,et al. The ELPA library: scalable parallel eigenvalue solutions for electronic structure theory and computational science , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.
[26] V. Pan,et al. Polynomial and matrix computations (vol. 1): fundamental algorithms , 1994 .
[27] Shivkumar Chandrasekaran,et al. A Fast Solver for HSS Representations via Sparse Matrices , 2006, SIAM J. Matrix Anal. Appl..
[28] S. Eisenstat,et al. A Stable and Efficient Algorithm for the Rank-One Modification of the Symmetric Eigenproblem , 1994, SIAM J. Matrix Anal. Appl..
[29] Jack J. Dongarra,et al. A Parallel Divide and Conquer Algorithm for the Symmetric Eigenvalue Problem on Distributed Memory Architectures , 1999, SIAM J. Sci. Comput..
[30] James Demmel,et al. Communication-optimal Parallel and Sequential QR and LU Factorizations , 2008, SIAM J. Sci. Comput..
[31] V. Pan. Structured Matrices and Polynomials: Unified Superfast Algorithms , 2001 .
[32] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[33] Pieter Ghysels,et al. A Distributed-Memory Package for Dense Hierarchically Semi-Separable Matrix Computations Using Randomization , 2015, ACM Trans. Math. Softw..
[34] James Demmel,et al. Cyclops Tensor Framework: Reducing Communication and Eliminating Load Imbalance in Massively Parallel Contractions , 2013, 2013 IEEE 27th International Symposium on Parallel and Distributed Processing.
[35] Jaeyoung Choi,et al. Pumma: Parallel universal matrix multiplication algorithms on distributed memory concurrent computers , 1994, Concurr. Pract. Exp..
[36] Lukas Krämer,et al. Parallel solution of partial symmetric eigenvalue problems from electronic structure calculations , 2011, Parallel Comput..
[37] B. Parlett,et al. Multiple representations to compute orthogonal eigenvectors of symmetric tridiagonal matrices , 2004 .
[38] James Demmel,et al. Communication-Optimal Parallel Recursive Rectangular Matrix Multiplication , 2013, 2013 IEEE 27th International Symposium on Parallel and Distributed Processing.
[39] J. Cuppen. A divide and conquer method for the symmetric tridiagonal eigenproblem , 1980 .
[40] Peter Arbenz,et al. Divide and conquer algorithms for the bandsymmetric eigenvalue problem , 1992, Parallel Computing.
[41] C. Pan. On the existence and computation of rank-revealing LU factorizations , 2000 .
[42] T. Pals,et al. FAST MATRIX ALGORITHMS FOR HIERARCHICALLY SEMI-SEPARABLE REPRESENTATIONS , 2002 .
[43] Timothy A. Davis,et al. The university of Florida sparse matrix collection , 2011, TOMS.
[44] Canqun Yang,et al. MilkyWay-2 supercomputer: system and application , 2014, Frontiers of Computer Science.
[45] W. Hackbusch. A Sparse Matrix Arithmetic Based on $\Cal H$-Matrices. Part I: Introduction to ${\Cal H}$-Matrices , 1999, Computing.