Wafer-Scale van der Waals Heterostructures with Ultraclean Interfaces via the Aid of Viscoelastic Polymer.

Two-dimensional (2D) van der Waals (vdW) heterostructures exhibit novel physical and chemical properties, allowing the development of unprecedented electronic, optical, and electrochemical devices. However, the construction of wafer-scale vdW heterostructures for practical applications is still limited due to the lack of well-established growth and transfer techniques. Herein, we report a method for the fabrication of wafer-scale 2D vdW heterostructures with an ultraclean interface between layers via the aid of a freestanding viscoelastic polymer support layer (VEPSL). The low glass transition temperature ( Tg) and viscoelastic nature of the VEPSL ensure absolute conformal contact between 2D layers, enabling the easy pick-up of layers and attaching to other 2D layers. This eventually leads to the construction of random sequence 2D vdW heterostructures such as molybdenum disulfide/tungsten disulfide/molybdenum diselenide/tungsten diselenide/hexagonal boron nitride. Furthermore, the VEPSL allows the conformal transfer of 2D vdW heterostructures onto arbitrary substrates, irrespective of surface roughness. To demonstrate the significance of the ultraclean interface, the fabricated molybdenum disulfide/graphene heterostructure employed as an electrocatalyst yielded excellent results of 73.1 mV·dec-1 for the Tafel slope and 0.12 kΩ of charge transfer resistance, which are almost twice as low as that of the impurity-trapped heterostructure.

[1]  Sang-Hoon Bae,et al.  Controlled crack propagation for atomic precision handling of wafer-scale two-dimensional materials , 2018, Science.

[2]  Mengwei Si,et al.  Ferroelectric Field-Effect Transistors Based on MoS2 and CuInP2S6 Two-Dimensional van der Waals Heterostructure. , 2018, ACS nano.

[3]  Tianyou Zhai,et al.  2D Layered Material‐Based van der Waals Heterostructures for Optoelectronics , 2018 .

[4]  Yuanyuan Ma,et al.  A Co2 P/WC Nano-Heterojunction Covered with N-Doped Carbon as Highly Efficient Electrocatalyst for Hydrogen Evolution Reaction. , 2018, ChemSusChem.

[5]  Xiaodong Xu,et al.  Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures , 2018, Science.

[6]  D. Duong,et al.  van der Waals Layered Materials: Opportunities and Challenges. , 2017, ACS Nano.

[7]  Guodong Liu,et al.  Wafer-Scale Growth and Transfer of Highly-Oriented Monolayer MoS2 Continuous Films. , 2017, ACS nano.

[8]  Md. Ashraful Islam,et al.  Centimeter-Scale 2D van der Waals Vertical Heterostructures Integrated on Deformable Substrates Enabled by Gold Sacrificial Layer-Assisted Growth. , 2017, Nano letters.

[9]  David A. Muller,et al.  Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures , 2017, Nature.

[10]  Changyong Chen,et al.  Thermal Release Transfer Printing for Stretchable Conformal Bioelectronics , 2017, Advanced science.

[11]  D. Das,et al.  Hydrogen Evolution Reaction Activity of Graphene–MoS2 van der Waals Heterostructures , 2017 .

[12]  Hyunjun Yoo,et al.  Bulk layered heterojunction as an efficient electrocatalyst for hydrogen evolution , 2017, Science Advances.

[13]  R. Sharma,et al.  Stacking sequence dependent photo-electrocatalytic performance of CVD grown MoS2/graphene van der Waals solids , 2017, Nanotechnology.

[14]  P. Kim,et al.  Frictional Magneto-Coulomb Drag in Graphene Double-Layer Heterostructures. , 2016, Physical review letters.

[15]  G. Duscher,et al.  Interlayer Coupling in Twisted WSe2/WS2 Bilayer Heterostructures Revealed by Optical Spectroscopy. , 2016, ACS nano.

[16]  Z. Tian,et al.  Catalysis with Two‐dimensional Materials and Their Heterostructures , 2016 .

[17]  M. Dresselhaus,et al.  A Rational Strategy for Graphene Transfer on Substrates with Rough Features , 2016, Advanced materials.

[18]  Qiang Fu,et al.  Catalysis with two-dimensional materials and their heterostructures. , 2016, Nature nanotechnology.

[19]  B. Ohtani,et al.  A silver-inserted zinc rhodium oxide and bismuth vanadium oxide heterojunction photocatalyst for overall pure-water splitting under red light , 2016 .

[20]  Hao Fu,et al.  Charge-Transfer Induced High Efficient Hydrogen Evolution of MoS2/graphene Cocatalyst , 2015, Scientific Reports.

[21]  Alexey Chernikov,et al.  Probing Interlayer Interactions in Transition Metal Dichalcogenide Heterostructures by Optical Spectroscopy: MoS2/WS2 and MoSe2/WSe2. , 2015, Nano letters.

[22]  Fengmin Wu,et al.  Interlayer coupling and optoelectronic properties of ultrathin two-dimensional heterostructures based on graphene, MoS2 and WS2 , 2015 .

[23]  J. Robinson,et al.  Dry graphene transfer print to polystyrene and ultra-high molecular weight polyethylene − Detailed chemical, structural, morphological and electrical characterization , 2015 .

[24]  J. Robinson,et al.  Freestanding van der Waals heterostructures of graphene and transition metal dichalcogenides. , 2015, ACS nano.

[25]  D. W. Li,et al.  In situ imaging and control of layer-by-layer femtosecond laser thinning of graphene. , 2015, Nanoscale.

[26]  Zhuhua Zhang,et al.  Photoluminescence quenching and charge transfer in artificial heterostacks of monolayer transition metal dichalcogenides and few-layer black phosphorus. , 2015, ACS nano.

[27]  Jonghwan Kim,et al.  Ultrafast charge transfer in atomically thin MoS₂/WS₂ heterostructures. , 2014, Nature nanotechnology.

[28]  Sefaattin Tongay,et al.  Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers. , 2014, Nano letters.

[29]  C. Hu,et al.  Field-effect transistors built from all two-dimensional material components. , 2014, ACS nano.

[30]  X. Duan,et al.  Electroluminescence and Photocurrent Generation from Atomically Sharp WSe2/MoS2 Heterojunction p–n Diodes , 2014, Nano letters.

[31]  A. M. van der Zande,et al.  Atomically thin p-n junctions with van der Waals heterointerfaces. , 2014, Nature nanotechnology.

[32]  H. Kaczmarek,et al.  Thermogravimetric analysis of thermal stability of poly(methyl methacrylate) films modified with photoinitiators , 2014, Journal of Thermal Analysis and Calorimetry.

[33]  X. Duan,et al.  Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. , 2013, Nature nanotechnology.

[34]  Vibhor Singh,et al.  Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping , 2013, 1311.4829.

[35]  K. L. Shepard,et al.  One-Dimensional Electrical Contact to a Two-Dimensional Material , 2013, Science.

[36]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[37]  M. Dresselhaus,et al.  Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces. , 2013, Nano letters.

[38]  Bin Zhao,et al.  A highly efficient TiO2@ZnO n-p-n heterojunction nanorod photocatalyst. , 2013, Nanoscale.

[39]  S. Haigh,et al.  Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. , 2012, Nature nanotechnology.

[40]  M. I. Katsnelson,et al.  Strong Coulomb drag and broken symmetry in double-layer graphene , 2012, Nature Physics.

[41]  A. Lindner,et al.  Adhesion of soft viscoelastic adhesives on periodic rough surfaces , 2012 .

[42]  N. Peres,et al.  Electron tunneling through ultrathin boron nitride crystalline barriers. , 2012, Nano letters.

[43]  N. Peres,et al.  Electron tunneling through ultrathin boron nitride crystalline barriers. , 2012, Nano letters.

[44]  N. Peres,et al.  Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures , 2011, Science.

[45]  J. R. Williams,et al.  Tunneling spectroscopy of graphene-boron-nitride heterostructures , 2011, 1108.2686.

[46]  Guosong Hong,et al.  MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. , 2011, Journal of the American Chemical Society.

[47]  Kwang S. Kim,et al.  Roll-to-roll production of 30-inch graphene films for transparent electrodes. , 2010, Nature nanotechnology.

[48]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[49]  Kwang S. Kim,et al.  Roll-to-roll production of 30-inch graphene films for transparent electrodes. , 2009, Nature nanotechnology.

[50]  R. Piner,et al.  Transfer of large-area graphene films for high-performance transparent conductive electrodes. , 2009, Nano letters.

[51]  A. Reina,et al.  Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. , 2009, Nano letters.

[52]  Thomas F. Jaramillo,et al.  Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts , 2007, Science.

[53]  B N J Persson,et al.  Contact area between a viscoelastic solid and a hard, randomly rough, substrate. , 2004, The Journal of chemical physics.

[54]  F. Blum,et al.  Thermal Characterization of PMMA Thin Films Using Modulated Differential Scanning Calorimetry , 2000 .

[55]  Rongzhi Li,et al.  Time-temperature superposition method for glass transition temperature of plastic materials , 2000 .

[56]  Bernhard Wunderlich,et al.  The Glass Transition Temperature of Polyethylene , 1980 .

[57]  D. Das,et al.  Hydrogen Evolution Reaction Activity of Graphene − MoS 2 van der Waals Heterostructures , 2017 .