Bulk-Limited Current Conduction in Amorphous InGaZnO Thin Films

The current conduction mechanism in radio frequency sputtered amorphous indium gallium zinc oxide (a-IGZO) films was investigated using model devices designed to mimic the carrier injection from an electrode to an a-IGZO channel in thin-film transistors. Interface-limited mechanisms, such as thermionic emission and Fowler-Nordheim tunneling, clearly fail to fit the current-voltage (I-V) curves. Instead, the I-V characteristics of the a-IGZO devices fit well within the framework of space-charge-limited current, whereas the conduction is enhanced by the Frenkel effect at high field (>0.1 MV/cm).

[1]  Dieter K. Schroder,et al.  Semiconductor Material and Device Characterization: Schroder/Semiconductor Material and Device Characterization, Third Edition , 2005 .

[2]  S. D. Brotherton,et al.  Surface-scattering effects in polycrystalline silicon thin-film transistors , 2003 .

[3]  Chi-Sun Hwang,et al.  4.3: Transparent ZnO Thin Film Transistor Array for the Application of Transparent AM‐OLED Display , 2006 .

[4]  W. K. Choi,et al.  Electrical characterization of radio frequency sputtered hydrogenated amorphous silicon carbide films , 1997 .

[5]  Hideo Hosono,et al.  Defect passivation and homogenization of amorphous oxide thin-film transistor by wet O2 annealing , 2008 .

[6]  K. Kao,et al.  Electrical transport in solids : with particular reference to organic semiconductors , 1981 .

[7]  F. Morrison,et al.  High-field conduction in barium titanate , 2004, cond-mat/0409585.

[8]  Changjung Kim,et al.  Amorphous gallium indium zinc oxide thin film transistors: Sensitive to oxygen molecules , 2007 .

[9]  Hiroshi Iwai,et al.  Space-Charge-Limited Currents in La2O3 Thin Films Deposited by E-Beam Evaporation after Low Temperature Dry-Nitrogen Annealing , 2005 .

[10]  C. Hwang Bulk- or interface-limited electrical conductions in IrO 2 /(Ba,Sr)TiO 3 /IrO 2 thin film capacitors , 2001 .

[11]  H. Ohta,et al.  Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors , 2004, Nature.

[12]  Kazuo Eda,et al.  Conduction mechanism of non‐Ohmic zinc oxide ceramics , 1978 .

[13]  T. Kamiya,et al.  High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering , 2006 .

[14]  Hideo Hosono,et al.  Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application , 2006 .

[15]  M. Furuta,et al.  4.1: Distinguished Paper: High Mobility Top‐Gate Zinc Oxide Thin‐Film Transistors (ZnO‐TFTs) for Active‐Matrix Liquid Crystal Displays , 2006 .

[16]  Yeon-Gon Mo,et al.  Improvements in the device characteristics of amorphous indium gallium zinc oxide thin-film transistors by Ar plasma treatment , 2007 .

[17]  Yeon-Gon Mo,et al.  High mobility bottom gate InGaZnO thin film transistors with SiOx etch stopper , 2007 .

[18]  J. Simmons Richardson-Schottky Effect in Solids , 1965 .

[19]  G. Horowitz,et al.  Extracting Parameters from the Current–Voltage Characteristics of Organic Field‐Effect Transistors , 2004 .

[20]  Hideo Hosono,et al.  Carrier transport in transparent oxide semiconductor with intrinsic structural randomness probed using single-crystalline InGaO3(ZnO)5 films , 2004 .

[21]  P. Murgatroyd,et al.  Theory of space-charge-limited current enhanced by Frenkel effect , 1970 .

[22]  D. Schroder Semiconductor Material and Device Characterization , 1990 .

[23]  Gupta,et al.  Hopping conduction in insulating rf-sputtered zinc oxide films. , 1994, Physical review. B, Condensed matter.