On the Shape Sensitivity of the First Dirichlet Eigenvalue for Two-Phase Problems

We consider a two-phase problem in thermal conductivity: inclusions filled with a material of conductivity σ1 are layered in a body of conductivity σ2. We address the shape sensitivity of the first eigenvalue associated with Dirichlet boundary conditions when both the boundaries of the inclusions and the body can be modified. We prove a differentiability result and provide the expressions of the first and second order derivatives. We apply the results to the optimal design of an insulated body. We prove the stability of the optimal design thanks to a second order analysis. We also continue the study of an extremal eigenvalue problem for a two-phase conductor in a ball initiated by Conca et al. (Appl. Math. Optim. 60(2):173–184, 2009) and pursued in Conca et al. (CANUM 2008, ESAIM Proc., vol. 27, pp.  311–321, EDP Sci., Les Ulis, 2009).

[1]  Jimmy Lamboley,et al.  Regularity of the optimal shape for the first eigenvalue of the laplacian with volume and inclusion constraints , 2008, 0807.2196.

[2]  Pierre-Louis Lions,et al.  On optimization problems with prescribed rearrangements , 1989 .

[3]  Marc Dambrine,et al.  About stability of equilibrium shapes , 2000 .

[4]  Carlos Conca,et al.  An Extremal Eigenvalue Problem for a Two-Phase Conductor in a Ball , 2009 .

[5]  Giuseppe Buttazzo,et al.  An existence result for a class of shape optimization problems , 1993 .

[6]  Antoine Henrot,et al.  Extremum Problems for Eigenvalues of Elliptic Operators , 2006 .

[7]  Antoine Henrot,et al.  Variation et optimisation de formes , 2005 .

[8]  Vladimir Maz’ya,et al.  Asymptotics of Solutions to General Elliptic Boundary Value Problems in Domains Perturbed Near Cone Vertices , 2000 .

[9]  Carlos Conca,et al.  SHAPE DERIVATIVE FOR A TWO-PHASE EIGENVALUE PROBLEM AND OPTIMAL CONFIGURATIONS IN A BALL ; , 2009 .

[10]  Arian Novruzi,et al.  Structure of shape derivatives , 2002 .

[11]  On the Optimal Insulation of Conductors , 1999 .

[12]  Michel Pierre,et al.  Lipschitz continuity of state functions in some optimal shaping , 2005 .

[13]  M. Bendsøe,et al.  On two formulations of an optimal insulation problem , 2007 .

[14]  Michel Dambrine,et al.  On Second Order Shape Optimization Methods for Electrical Impedance Tomography , 2007, SIAM J. Control. Optim..

[15]  Menahem Schiffer,et al.  Hadamard's Formula and Variation of Domain-Functions , 1946 .

[16]  G. Watson Bessel Functions. (Scientific Books: A Treatise on the Theory of Bessel Functions) , 1923 .

[17]  Marc Dambrine,et al.  On variations of the shape Hessian and sufficient conditions for the stability of critical shapes. , 2002 .

[18]  A. Wagner Optimal Shape Problems for Eigenvalues , 2005 .

[19]  V. Maz'ya,et al.  Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains: Volume I , 2000 .

[20]  Steven J. Cox,et al.  Extremal eigenvalue problems for two-phase conductors , 1996 .

[21]  Robert V. Kohn,et al.  Reinforcement by a thin layer with oscillating thickness , 1987 .

[22]  Variation d'un point de retournement par rapport au domaine , 1979 .

[23]  A. Friedman Reinforcement of the principal eigenvalue of an elliptic operator , 1980 .