Riesz multiwavelet bases generated by vector refinement equation

AbstractIn this paper, we investigate compactly supported Riesz multiwavelet sequences and Riesz multiwavelet bases for L2(ℝs). Suppose ψ = (ψ1,..., ψr)T and $$ \tilde \psi = (\tilde \psi ^1 ,...,\tilde \psi ^r )^T $$ are two compactly supported vectors of functions in the Sobolev space (Hμ(ℝs))r for some μ > 0. We provide a characterization for the sequences {ψjkl: l = 1,...,r, j ε ℤ, k ε ℤs} and $$ \tilde \psi _{jk}^\ell :\ell = 1,...,r,j \in \mathbb{Z},k \in \mathbb{Z}^s $$ to form two Riesz sequences for L2(ℝs), where ψjkl = mj/2ψl(Mj·−k) and $$ \tilde \psi _{jk}^\ell = m^{{j \mathord{\left/ {\vphantom {j 2}} \right. \kern-\nulldelimiterspace} 2}} \tilde \psi ^\ell (M^j \cdot - k) $$, M is an s × s integer matrix such that limn→∞M−n = 0 and m = |detM|. Furthermore, let ϕ = (ϕ1,...,ϕr)T and $$ \tilde \phi = (\tilde \phi ^1 ,...,\tilde \phi ^r )^T $$ be a pair of compactly supported biorthogonal refinable vectors of functions associated with the refinement masks a, $$ \tilde a $$ and M, where a and $$ \tilde a $$ are finitely supported sequences of r × r matrices. We obtain a general principle for characterizing vectors of functions ψν = (ψν1,...,ψνr)T and $$ \tilde \psi ^\nu = (\tilde \psi ^{\nu 1} ,...,\tilde \psi ^{\nu r} )^T $$, ν = 1,..., m − 1 such that two sequences {ψjkνl: ν = 1,..., m − 1, l = 1,...,r, j ε ℤ, k ε ℤs} and {$$ \tilde \psi _{jk}^\nu $$ : ν=1,...,m−1,ℓ=1,...,r, j ∈ ℤ, k ∈ ℤs} form two Riesz multiwavelet bases for L2(ℝs). The bracket product [f, g] of two vectors of functions f, g in (L2(ℝs))r is an indispensable tool for our characterization.

[1]  R. Young,et al.  An introduction to nonharmonic Fourier series , 1980 .

[2]  Charles A. Micchelli,et al.  Using the Refinement Equations for the Construction of Pre-Wavelets II: Powers of Two , 1991, Curves and Surfaces.

[3]  I. Daubechies,et al.  A STABILITY CRITERION FOR BIORTHOGONAL WAVELET BASES AND THEIR RELATED SUBBAND CODING SCHEME , 1992 .

[4]  C. Micchelli,et al.  On linear independence for integer translates of a finite number of functions , 1993, Proceedings of the Edinburgh Mathematical Society.

[5]  Y. Meyer Wavelets and Operators , 1993 .

[6]  R. DeVore,et al.  Approximation from shift-invariant subspaces of ₂(^{}) , 1994 .

[7]  R. DeVore,et al.  Approximation from Shift-Invariant Subspaces of L 2 (ℝ d ) , 1994 .

[8]  Zuowei Shen,et al.  Multiresolution and wavelets , 1994, Proceedings of the Edinburgh Mathematical Society.

[9]  R. Long,et al.  Biorthogonal Wavelet Bases on Rd , 1995 .

[10]  C. Chui,et al.  A study of orthonormal multi-wavelets , 1996 .

[11]  I. Daubechies,et al.  A new technique to estimate the regularity of refinable functions , 1996 .

[12]  W. Dahmen Wavelet and multiscale methods for operator equations , 1997, Acta Numerica.

[13]  A. Ron,et al.  Affine Systems inL2(Rd): The Analysis of the Analysis Operator , 1997 .

[14]  Rong-Qing Jia,et al.  Vector subdivision schemes and multiple wavelets , 1998, Math. Comput..

[15]  R. Jia Stability of the Shifts of a Finite Number of Functions , 1998 .

[16]  R. Jia Shift-invariant spaces and linear operator equations , 1998 .

[17]  Zuowei Shen,et al.  Multivariate Compactly Supported Fundamental Refinable Functions, Duals, and Biorthogonal Wavelets , 1999 .

[18]  R. Jia CASCADE ALGORITHMS IN WAVELET ANALYSIS , 2002 .

[19]  B. Han Compactly supported tight wavelet frames and orthonormal wavelets of exponential decay with a general dilation matrix , 2003 .

[20]  Ding-Xuan Zhou,et al.  Compactly supported wavelet bases for Sobolev spaces , 2003 .

[21]  Amir Averbuch,et al.  A new family of spline-based biorthogonal wavelet transforms and their application to image compression , 2004, IEEE Transactions on Image Processing.

[22]  Wei Lin,et al.  Wavelet Analysis and Applications , 2011 .

[23]  B. Han,et al.  Symmetric MRA tight wavelet frames with three generators and high vanishing moments , 2005 .

[24]  R. Jia Bessel sequences in Sobolev spaces , 2006 .

[25]  Bin Han,et al.  Riesz multiwavelet bases , 2006 .

[26]  Song Li,et al.  Biorthogonal multiple wavelets generated by vector refinement equation , 2007 .

[27]  R. Jia,et al.  Characterization of Riesz bases of wavelets generated from multiresolution analysis , 2007 .