The role of architectural engineering in macromolecular self-assemblies via non-covalent interactions: A molecular LEGO approach

Abstract Macromolecular self-assembly has made explosive development in the last several decades, are being extensively explored in the fields of drug delivery, lithography, catalysis, molecular electronics, sensors, and so many others. In this review, we summarize the self-assembly of macromolecules such as polymers, dendrimers, molecular nanoparticles, colloids, DNA and proteins, from the aspect of architectural engineering and mainly focus on the periodic and quasi-periodic assembled structures. In particular, simple building blocks can be conjugated together to construct complex macromolecular motifs with different architectures and physical interactions. We first introduce the concept of architectural engineering, then present a brief overview of supramolecular interactions and five main categories of building blocks, including polymer coils, dendrons, rods, discs, and polyhedra. We further discuss the detailed self-assembly behaviors of fifteen types of specific macromolecular motifs involving different building blocks. Special attention is paid to the architectural effect of macromolecular self-assembly. In the end, future perspective on architectural engineering is briefly mentioned.

[1]  N. Houbenov,et al.  Hierarchical Self-Assembly of Halogen-Bonded Block Copolymer Complexes into Upright Cylindrical Domains , 2017, Chem.

[2]  Wen-Bin Zhang,et al.  A giant surfactant of polystyrene-(carboxylic Acid-functionalized polyhedral oligomeric silsesquioxane) amphiphile with highly stretched polystyrene tails in micellar assemblies. , 2010, Journal of the American Chemical Society.

[3]  Stephen Z. D. Cheng,et al.  Topologically Directed Assemblies of Semiconducting Sphere-Rod Conjugates. , 2017, Journal of the American Chemical Society.

[4]  Karin Musier-Forsyth,et al.  Sequence-encoded self-assembly of multiple-nanocomponent arrays by 2D DNA scaffolding. , 2005, Nano letters.

[5]  B. Gibb,et al.  The aqueous supramolecular chemistry of cucurbit[n]urils, pillar[n]arenes and deep-cavity cavitands. , 2017, Chemical Society reviews.

[6]  K. Wooley,et al.  Dynamic cylindrical assembly of triblock copolymers by a hierarchical process of covalent and supramolecular interactions. , 2011, Journal of the American Chemical Society.

[7]  Chih-Hao Hsu,et al.  Selective assemblies of giant tetrahedra via precisely controlled positional interactions , 2015, Science.

[8]  Stephen Z. D. Cheng,et al.  Frank-Kasper and related quasicrystal spherical phases in macromolecules , 2017, Science China Chemistry.

[9]  Kevin D. Dorfman,et al.  Stable Frank–Kasper phases of self-assembled, soft matter spheres , 2018, Proceedings of the National Academy of Sciences.

[10]  Bartlett,et al.  Superlattice formation in mixtures of hard-sphere colloids , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[11]  Stephen Z. D. Cheng,et al.  Highly Asymmetric Phase Behaviors of Polyhedral Oligomeric Silsesquioxane-Based Multiheaded Giant Surfactants. , 2018, ACS nano.

[12]  V. Percec,et al.  Spherical Supramolecular Minidendrimers Self-Organized in an “Inverse Micellar”-like Thermotropic Body-Centered Cubic Liquid Crystalline Phase , 2000 .

[13]  Ziherl,et al.  Soap froths and crystal structures , 2000, Physical review letters.

[14]  M. Weck,et al.  Supramolecular Helix–Helix Block Copolymers , 2016 .

[15]  James R. Dewald,et al.  A New Class of Polymers: Starburst-Dendritic Macromolecules , 1985 .

[16]  O. Yaghi,et al.  Structures of Metal-Organic Frameworks with Rod Secondary Building Units. , 2016, Chemical reviews.

[17]  S. Gruner,et al.  Mesophase Structure-Mechanical and Ionic Transport Correlations in Extended Amphiphilic Dendrons , 2004, Science.

[18]  Wen-Bin Zhang,et al.  Geometry induced sequence of nanoscale Frank–Kasper and quasicrystal mesophases in giant surfactants , 2016, Proceedings of the National Academy of Sciences.

[19]  S. Teichmann,et al.  Structure, dynamics, assembly, and evolution of protein complexes. , 2015, Annual review of biochemistry.

[20]  T. Aida,et al.  Nematic-to-columnar mesophase transition by in situ supramolecular polymerization , 2019, Science.

[21]  J. V. Sanders,et al.  Close-packed structures of spheres of two different sizes II. The packing densities of likely arrangements , 1980 .

[22]  T. Fukushima,et al.  Wide-range 2D lattice correlation unveiled for columnarly assembled triphenylene hexacarboxylic esters. , 2012, Angewandte Chemie.

[23]  C. M. Bates,et al.  Multiblock Polymers: Panacea or Pandora’s Box? , 2012, Science.

[24]  Christopher A. Hunter,et al.  The nature of .pi.-.pi. interactions , 1990 .

[25]  J. Reif,et al.  DNA-Templated Self-Assembly of Protein Arrays and Highly Conductive Nanowires , 2003, Science.

[26]  Seungwoo Lee,et al.  Frank-Kasper Phases Identified in PDMS-b-PTFEA Copolymers with High Conformational Asymmetry. , 2019, Macromolecular rapid communications.

[27]  S. Glotzer Some Assembly Required , 2004, Science.

[28]  Stephen Z. D. Cheng,et al.  Cascading One-Pot Synthesis of Single-Tailed and Asymmetric Multitailed Giant Surfactants. , 2013, ACS macro letters.

[29]  Weihua Li,et al.  σ Phase Formed in Conformationally Asymmetric AB-Type Block Copolymers. , 2014, ACS macro letters.

[30]  Matthew N. O’Brien,et al.  Controlled Symmetry Breaking in Colloidal Crystal Engineering with DNA. , 2018, ACS nano.

[31]  Wojciech Pisula,et al.  Discotic liquid crystals: a new generation of organic semiconductors. , 2007, Chemical Society reviews.

[32]  Fanying Meng,et al.  Combining Orthogonal Chain-End Deprotections and Thiol-Maleimide Michael Coupling: Engineering Discrete Oligomers by an Iterative Growth Strategy. , 2017, Angewandte Chemie.

[33]  N. Houbenov,et al.  Halogen-bonded mesogens direct polymer self-assemblies up to millimetre length scale , 2014, Nature Communications.

[34]  Jiang Guo,et al.  Binary tree-inspired digital dendrimer , 2019, Nature Communications.

[35]  J. Sinclair,et al.  Generation of protein lattices by fusing proteins with matching rotational symmetry. , 2011, Nature nanotechnology.

[36]  Stephen Z. D. Cheng,et al.  Giant gemini surfactants based on polystyrene–hydrophilic polyhedral oligomeric silsesquioxane shape amphiphiles: sequential “click” chemistry and solution self-assembly , 2013 .

[37]  O. Yaghi,et al.  The atom, the molecule, and the covalent organic framework , 2017, Science.

[38]  T. Aida,et al.  Cyclic block copolymers for controlling feature sizes in block copolymer lithography. , 2012, ACS nano.

[39]  E. W. Meijer,et al.  About Supramolecular Assemblies of π-Conjugated Systems , 2005 .

[40]  V. Manoharan Colloidal matter: Packing, geometry, and entropy , 2015, Science.

[41]  V. Percec,et al.  Hierarchical Self-Organization of Perylene Bisimides into Supramolecular Spheres and Periodic Arrays Thereof. , 2016, Journal of the American Chemical Society.

[42]  Stephen Z. D. Cheng,et al.  Breaking Parallel Orientation of Rods via Dendritic Architecture toward Diverse Supramolecular Structures. , 2019, Angewandte Chemie.

[43]  Chih-Hao Hsu,et al.  Asymmetric Giant “Bolaform-like” Surfactants: Precise Synthesis, Phase Diagram, and Crystallization-Induced Phase Separation , 2014 .

[44]  M. Mahanthappa,et al.  Order and Disorder in High χ/Low N, Broad Dispersity ABA Triblock Polymers , 2017 .

[45]  E. Thomas,et al.  Transfer of chirality from molecule to phase in self-assembled chiral block copolymers. , 2012, Journal of the American Chemical Society.

[46]  C. Kübel,et al.  Unraveling the Self-Assembly of Heterocluster Janus Dumbbells into Hybrid Cubosomes with Internal Double-Diamond Structure. , 2018, Journal of the American Chemical Society.

[47]  Stephen Z. D. Cheng,et al.  Self-Assembled Structures of Giant Surfactants Exhibit a Remarkable Sensitivity on Chemical Compositions and Topologies for Tailoring Sub-10 nm Nanostructures , 2017 .

[48]  D Richter,et al.  Unexpected power-law stress relaxation of entangled ring polymers. , 2008, Nature materials.

[49]  P. Pusey,et al.  Phase behaviour of concentrated suspensions of nearly hard colloidal spheres , 1986, Nature.

[50]  S. Kitagawa,et al.  Metal-Organic Polyhedral Core as a Versatile Scaffold for Divergent and Convergent Star Polymer Synthesis. , 2016, Journal of the American Chemical Society.

[51]  Yu Liu,et al.  Calixarene-based supramolecular polymerization in solution. , 2012, Chemical Society reviews.

[52]  N. Hadjichristidis,et al.  Well-Defined Cyclic Triblock Terpolymers: A Missing Piece of the Morphology Puzzle. , 2016, ACS macro letters.

[53]  Stephen Z. D. Cheng,et al.  Identification of a Frank–Kasper Z phase from shape amphiphile self-assembly , 2019, Nature Chemistry.

[54]  K. Dorfman,et al.  Thermal processing of diblock copolymer melts mimics metallurgy , 2017, Science.

[55]  J. Fréchet,et al.  Convergent dendrons and dendrimers: from synthesis to applications. , 2001, Chemical reviews.

[56]  G. Grason,et al.  Self-consistent field theory of multiply branched block copolymer melts. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[57]  Maximizing Entropy by Minimizing Area: Towards a New Principle of Self-Organization , 2001, cond-mat/0103171.

[58]  M. Allendorf,et al.  MOF-based electronic and opto-electronic devices. , 2014, Chemical Society reviews.

[59]  Debra J. Audus,et al.  Phase behavior of electrostatically complexed polyelectrolyte gels using an embedded fluctuation model. , 2015, Soft matter.

[60]  C. Hawker,et al.  Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules , 1990 .

[61]  D. Baker,et al.  Design of ordered two-dimensional arrays mediated by noncovalent protein-protein interfaces , 2015, Science.

[62]  Gi-Ra Yi,et al.  Shaping colloids for self-assembly , 2013, Nature Communications.

[63]  Ian W. Hamley,et al.  Introduction to soft matter: synthetic and biological self-assembling materials. Revised edition , 2007 .

[64]  M. Engel,et al.  Clathrate colloidal crystals , 2017, Science.

[65]  Bilal R. Kaafarani,et al.  Discotic Liquid Crystals for Opto-Electronic Applications †,‡ , 2011 .

[66]  A. Hexemer,et al.  Conjugated block copolymer photovoltaics with near 3% efficiency through microphase separation. , 2013, Nano letters.

[67]  C. Ahn,et al.  Controlling polymer shape through the self-assembly of dendritic side-groups , 1998, Nature.

[68]  Xinxin Tan,et al.  Supramolecular Polymers: Historical Development, Preparation, Characterization, and Functions. , 2015, Chemical reviews.

[69]  S. Orkin,et al.  The switch from fetal to adult hemoglobin. , 2013, Cold Spring Harbor perspectives in medicine.

[70]  M. Klein,et al.  Virgil Percec and Other Complex Architectures Self-Assembly of Janus Dendrimers into Uniform Dendrimersomes , 2014 .

[71]  V. Percec,et al.  Predicting the structure of supramolecular dendrimers via the analysis of libraries of AB3 and constitutional isomeric AB2 biphenylpropyl ether self-assembling dendrons. , 2009, Journal of the American Chemical Society.

[72]  G. Koten,et al.  Fluorous phase separation techniques in catalysis , 1999 .

[73]  M. Dijkstra,et al.  Prediction and observation of crystal structures of oppositely charged colloids. , 2006, Physical review letters.

[74]  Fei Zhang,et al.  DNA Origami: Scaffolds for Creating Higher Order Structures. , 2017, Chemical reviews.

[75]  Jean M. J. Fréchet,et al.  Dendrimers and supramolecular chemistry , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[76]  Ben Zhong Tang,et al.  Aggregation-induced emission. , 2011, Chemical Society reviews.

[77]  Stephen Z. D. Cheng,et al.  Hierarchical structure and polymorphism of a sphere-cubic shape amphiphile based on a polyhedral oligomeric silsesquioxane–[60]fullerene conjugate , 2011 .

[78]  Jeremiah A. Johnson,et al.  Reduction of (Meth)acrylate-Based Block Copolymers Provides Access to Self-Assembled Materials with Ultrasmall Domains , 2018, Macromolecules.

[79]  Zesheng Li,et al.  Computer Simulation of Cyclic Block Copolymer Microphase Separation , 2005 .

[80]  Virgil Percec,et al.  Synthesis and Structural Analysis of Two Constitutional Isomeric Libraries of AB2-Based Monodendrons and Supramolecular Dendrimers , 2001 .

[81]  Faisal A. Aldaye,et al.  Assembling Materials with DNA as the Guide , 2008, Science.

[82]  M. Monteiro,et al.  Various polystyrene topologies built from tailored cyclic polystyrene via CuAAC reactions. , 2010, Chemical communications.

[83]  D. Hammer,et al.  Polymersomes: tough vesicles made from diblock copolymers. , 1999, Science.

[84]  Y. Amemiya,et al.  Systematic Transitions of Tiling Patterns Formed by ABC Star-Shaped Terpolymers , 2006 .

[85]  R. Mezzenga,et al.  Self-Assembly of Poly(diethylhexyloxy-p-phenylenevinylene)-b- poly(4-vinylpyridine) Rod−Coil Block Copolymer Systems , 2007 .

[86]  Joseph G. Manion,et al.  Poly(3-alkylthiophene)- block-poly(3-alkylselenophene)s: Conjugated Diblock Co-polymers with Atypical Self-Assembly Behavior. , 2019, ACS applied materials & interfaces.

[87]  Chris Leighton,et al.  Sphericity and symmetry breaking in the formation of Frank–Kasper phases from one component materials , 2014, Proceedings of the National Academy of Sciences.

[88]  Jeremiah A. Johnson,et al.  Block Co-PolyMOCs by Stepwise Self-Assembly. , 2016, Journal of the American Chemical Society.

[89]  B. Olsen,et al.  Solid-state nanostructured materials from self-assembly of a globular protein-polymer diblock copolymer. , 2011, ACS nano.

[90]  W. Su,et al.  Side Chain Effects on the Optoelectronic Properties and Self-Assembly Behaviors of Terthiophene–Thieno[3,4-c]pyrrole-4,6-dione Based Conjugated Polymers , 2018, Macromolecules.

[91]  Stephen Z. D. Cheng,et al.  Toward rational and modular molecular design in soft matter engineering , 2015, Chinese Journal of Polymer Science.

[92]  V. Percec,et al.  Dendronized Poly(2-oxazoline) Displays within only Five Monomer Repeat Units Liquid Quasicrystal, A15 and σ Frank-Kasper Phases. , 2018, Journal of the American Chemical Society.

[93]  Christopher B. Murray,et al.  Structural diversity in binary nanoparticle superlattices , 2006, Nature.

[94]  Wen-Bin Zhang,et al.  Breaking symmetry toward nonspherical Janus particles based on polyhedral oligomeric silsesquioxanes: molecular design, "click" synthesis, and hierarchical structure. , 2011, Journal of the American Chemical Society.

[95]  Hao Yan,et al.  DNA tile based self-assembly: building complex nanoarchitectures. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[96]  R. D. Lundberg,et al.  Structural Properties of Ionomers , 1989 .

[97]  Goran Ungar,et al.  Direct Visualization of Individual Cylindrical and Spherical Supramolecular Dendrimers , 1997 .

[98]  E. Kramer,et al.  A modular strategy for fully conjugated donor-acceptor block copolymers. , 2012, Journal of the American Chemical Society.

[99]  George R. Newkome,et al.  Poly(amidoamine), polypropylenimine, and related dendrimers and dendrons possessing different 1 → 2 branching motifs : An overview of the divergent procedures , 2008 .

[100]  M. Hillmyer,et al.  Poly(allyl alcohol) Homo- and Block Polymers by Postpolymerization Reduction of an Activated Polyacrylamide. , 2018, Journal of the American Chemical Society.

[101]  Stoddart,et al.  Artificial Molecular Machines. , 2000, Angewandte Chemie.

[102]  Zhenqiang Yu,et al.  Isophthalate-Based Room Temperature Phosphorescence: From Small Molecule to Side-Chain Jacketed Liquid Crystalline Polymer , 2019, Macromolecules.

[103]  Mark S. Taylor,et al.  Solution-phase self-assembly of complementary halogen bonding polymers. , 2015, Journal of the American Chemical Society.

[104]  Stephen Z. D. Cheng,et al.  Thickness-Dependent Order-to-Order Transitions of Bolaform-like Giant Surfactant in Thin Films , 2017 .

[105]  Hao Yan,et al.  Self-assembling a molecular pegboard. , 2005, Journal of the American Chemical Society.

[106]  T. Yeates,et al.  Principles for designing ordered protein assemblies. , 2012, Trends in cell biology.

[107]  Stephen Z. D. Cheng,et al.  Giant surfactants provide a versatile platform for sub-10-nm nanostructure engineering , 2013, Proceedings of the National Academy of Sciences.

[108]  Christopher B. Murray,et al.  Control of Metal Nanocrystal Size Reveals Metal-Support Interface Role for Ceria Catalysts , 2013, Science.

[109]  Lingying Shi,et al.  Remarkably Rich Variety of Nanostructures and Order–Order Transitions in a Rod–Coil Diblock Copolymer , 2013 .

[110]  G. Fredrickson,et al.  Block Copolymers—Designer Soft Materials , 1999 .

[111]  J. Long,et al.  Introduction to metal-organic frameworks. , 2012, Chemical reviews.

[112]  M. Weck,et al.  Supramolecular ABC triblock copolymers. , 2009, Angewandte Chemie.

[113]  Yu Wang,et al.  Colloids with valence and specific directional bonding , 2012, Nature.

[114]  B. Olsen,et al.  Nonlamellar Phases in Asymmetric Rod−Coil Block Copolymers at Increased Segregation Strengths , 2007 .

[115]  Timothy M. Gillard,et al.  Conformational Asymmetry and Quasicrystal Approximants in Linear Diblock Copolymers. , 2017, Physical review letters.

[116]  M. R. Imam,et al.  Self-assembly of dendronized triphenylenes into helical pyramidal columns and chiral spheres. , 2009, Journal of the American Chemical Society.

[117]  H. Hasegawa,et al.  Stability of the Fddd Phase in Diblock Copolymer Melts , 2008 .

[118]  F. Dumur,et al.  Truxene: a promising scaffold for future materials , 2015 .

[119]  O. Yaghi,et al.  Carbon capture and conversion using metal-organic frameworks and MOF-based materials. , 2019, Chemical Society reviews.

[120]  M. R. Imam,et al.  Hierarchical Self-Organization of Chiral Columns from Chiral Supramolecular Spheres. , 2018, Journal of the American Chemical Society.

[121]  F. Bates,et al.  Polyisoprene-Polystyrene Diblock Copolymer Phase Diagram near the Order-Disorder Transition , 1995 .

[122]  N. Boden,et al.  Triphenylene-Based Discotic-Liquid-Crystalline Polymers: A Universal, Rational Synthesis , 1995 .

[123]  Padma Gopalan,et al.  Hierarchical Nanostructures of Organosilicate Nanosheets within Self-Organized Block Copolymer Films , 2008 .

[124]  C. Tschierske Microsegregation in Liquid Crystalline Systems: Basic Concepts , 2014 .

[125]  J. Storhoff,et al.  A DNA-based method for rationally assembling nanoparticles into macroscopic materials , 1996, Nature.

[126]  Jeremiah A. Johnson,et al.  Graft-through Synthesis and Assembly of Janus Bottlebrush Polymers from A-Branch-B Diblock Macromonomers. , 2016, Journal of the American Chemical Society.

[127]  H. Hasegawa,et al.  Determination of the Fddd Phase Boundary in Polystyrene-block-polyisoprene Diblock Copolymer Melts , 2009 .

[128]  Stephen Z. D. Cheng,et al.  Hierarchical Self-Organization of ABn Dendron-like Molecules into a Supramolecular Lattice Sequence , 2017, ACS central science.

[129]  H. Dietz,et al.  Dynamic DNA devices and assemblies formed by shape-complementary, non–base pairing 3D components , 2015, Science.

[130]  W. Hinsberg,et al.  Block copolymer based nanostructures: materials, processes, and applications to electronics. , 2010, Chemical reviews.

[131]  Weihua Li,et al.  Origins of low-symmetry phases in asymmetric diblock copolymer melts , 2018, Proceedings of the National Academy of Sciences.

[132]  W. Su,et al.  Facile synthesis of well-defined block copolymers containing regioregular poly(3-hexyl thiophene) via anionic macroinitiation method and their self-assembly behavior. , 2007, Journal of the American Chemical Society.

[133]  V. Percec,et al.  Rational Design of the First Nonspherical Dendrimer Which Displays Calamitic Nematic and Smectic Thermotropic Liquid Crystalline Phases , 1995 .

[134]  J. Hedrick,et al.  Zwitterionic polymerization of lactide to cyclic poly(lactide) by using N-heterocyclic carbene organocatalysts. , 2007, Angewandte Chemie.

[135]  K. Dorfman,et al.  Cornucopia of Nanoscale Ordered Phases in Sphere-Forming Tetrablock Terpolymers. , 2016, ACS nano.

[136]  T. Russell,et al.  Evaluation of the Interaction Parameter for Poly(solketal methacrylate)-block-polystyrene Copolymers , 2018 .

[137]  M. Matsen Effect of Architecture on the Phase Behavior of AB-Type Block Copolymer Melts , 2012 .

[138]  Yuliang Yang,et al.  Phase behaviors of cyclic diblock copolymers. , 2011, The Journal of chemical physics.

[139]  Ryan T. K. Kwok,et al.  Aggregation-Induced Emission: Together We Shine, United We Soar! , 2015, Chemical reviews.

[140]  P. Schuhmacher,et al.  Fast photoconduction in the highly ordered columnar phase of a discotic liquid crystal , 1994, Nature.

[141]  Gi-Ra Yi,et al.  Colloidal alloys with preassembled clusters and spheres. , 2017, Nature materials.

[142]  D. Frenkel,et al.  Entropy-driven formation of a superlattice in a hard-sphere binary mixture , 1993, Nature.

[143]  G. Ungar,et al.  Rational Design of the First Spherical Supramolecular Dendrimers Self-Organized in a Novel Thermotropic Cubic Liquid-Crystalline Phase and the Determination of Their Shape by X-Ray-Analysis , 1997 .

[144]  Dongzhong Chen,et al.  Well-Organized Columnar Superlattices via Positive Coupling between Polymer Backbone and Discotic Side Groups , 2015 .

[145]  G. Grason The packing of soft materials : Molecular asymmetry, geometric frustration and optimal lattices in block copolymer melts , 2006 .

[146]  Philip S Lukeman,et al.  Nucleic acid nanostructures: bottom-up control of geometry on the nanoscale , 2005, Reports on progress in physics. Physical Society.

[147]  P. Zavattieri,et al.  Self-Assembly of Coherently Dynamic, Auxetic Two-Dimensional Protein Crystals , 2016, Nature.

[148]  A. Kosaka,et al.  A Glass Hook Allows Fishing of Hexa‐peri‐hexabenzocoronene Graphitic Nanotubes: Fabrication of a Macroscopic Fiber with Anisotropic Electrical Conduction , 2006 .

[149]  Yan Xia,et al.  Efficient synthesis of narrowly dispersed brush copolymers and study of their assemblies: the importance of side chain arrangement. , 2009, Journal of the American Chemical Society.

[150]  Stephen Z. D. Cheng,et al.  Thiol-Michael “click” chemistry: another efficient tool for head functionalization of giant surfactants , 2014 .

[151]  Stephen Z. D. Cheng,et al.  Tunable Affinity and Molecular Architecture Lead to Diverse Self-Assembled Supramolecular Structures in Thin Films. , 2016, ACS nano.

[152]  B. Hsiao,et al.  Hierarchical Assembly of a Series of Rod-Coil Block Copolymers: Supramolecular LC Phase in Nanoenviroment , 2004 .

[153]  Jeremiah A. Johnson,et al.  Star PolyMOCs with Diverse Structures, Dynamics, and Functions by Three-Component Assembly. , 2016, Angewandte Chemie.

[154]  E. Buhleier,et al.  "Cascade"- and "Nonskid-Chain-like" Syntheses of Molecular Cavity Topologies , 1978 .

[155]  R. Williams The polyborane, carborane, carbocation continuum: architectural patterns , 1992 .

[156]  Yuliang Yang,et al.  Discovering ordered phases of block copolymers: new results from a generic Fourier-space approach. , 2008, Physical review letters.

[157]  Jae-Hwang Lee,et al.  Large-Volume Self-Organization of Polymer/Nanoparticle Hybrids with Millimeter-Scale Grain Sizes Using Brush Block Copolymers. , 2015, Journal of the American Chemical Society.

[158]  D. E. Piephoff,et al.  Nanoscale distribution and segregation of midblock-selective co-penetrants in ABA triblock copolymer lamellae , 2013 .

[159]  P. Damasceno,et al.  Predictive Self-Assembly of Polyhedra into Complex Structures , 2012, Science.

[160]  R. Grubbs,et al.  Synthesis of discotic columnar side-chain liquid crystalline polymers by ring-opening metathesis polymerization (ROMP) , 1997 .

[161]  I. Šics,et al.  Perforated layer structures in liquid crystalline rod-coil block copolymers. , 2005, Journal of the American Chemical Society.

[162]  M. R. Imam,et al.  Dendron-mediated self-assembly, disassembly, and self-organization of complex systems. , 2009, Chemical reviews.

[163]  T. Yeates Geometric Principles for Designing Highly Symmetric Self-Assembling Protein Nanomaterials. , 2017, Annual review of biophysics.

[164]  B. Olsen,et al.  Topology effects on protein–polymer block copolymer self-assembly , 2019, Polymer Chemistry.

[165]  Hirokazu Hasegawa,et al.  Orthorhombic Fddd Network in Diblock Copolymer Melts , 2006 .

[166]  R. Grubbs,et al.  Efficient Synthesis of Narrowly Dispersed Brush Polymers via Living Ring-Opening Metathesis Polymerization of Macromonomers , 2009 .

[167]  Jin Kon Kim,et al.  Functional nanomaterials based on block copolymer self-assembly , 2010 .

[168]  Stephen Z. D. Cheng,et al.  Hydrogen-Bonding-Induced Nanophase Separation in Giant Surfactants Consisting of Hydrophilic [60]Fullerene Tethered to Block Copolymers at Different Locations , 2015 .

[169]  Chih-Hao Hsu,et al.  Manipulation of Self-Assembled Nanostructure Dimensions in Molecular Janus Particles. , 2016, ACS nano.

[170]  Yue Gai,et al.  Controlled supramolecular self-assembly of large nanoparticles in amphiphilic brush block copolymers. , 2015, Journal of the American Chemical Society.

[171]  Sung Yong Park,et al.  DNA-programmable nanoparticle crystallization , 2008, Nature.

[172]  Lucas W Antony,et al.  Dynamic actuation of glassy polymersomes through isomerization of a single azobenzene unit at the block copolymer interface , 2018, Nature Chemistry.

[173]  M. Weck,et al.  Fabrication of supramolecular semiconductor block copolymers by ring-opening metathesis polymerization. , 2015, Chemistry.

[174]  Wei Wang,et al.  Covalent organic frameworks (COFs): from design to applications. , 2013, Chemical Society reviews.

[175]  Xinghe Fan,et al.  Self-assembly and Properties of Block Copolymers Containing Mesogen-Jacketed Liquid Crystalline Polymers as Rod Blocks , 2018, Chinese Journal of Polymer Science.

[176]  M. Klein,et al.  Exploring functional pairing between surface glycoconjugates and human galectins using programmable glycodendrimersomes , 2018, Proceedings of the National Academy of Sciences.

[177]  Wei Zheng,et al.  Morphology of ABC Triblock Copolymers , 1995 .

[178]  M. Weck,et al.  Supramolecular Diblock Copolymers Featuring Well-defined Telechelic Building Blocks. , 2016, Angewandte Chemie.

[179]  F. Bates,et al.  Discovery of a Frank-Kasper σ Phase in Sphere-Forming Block Copolymer Melts , 2010, Science.

[180]  Hua Zhu,et al.  Single-component quasicrystalline nanocrystal superlattices through flexible polygon tiling rule , 2018, Science.

[181]  M. Engel,et al.  Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials. , 2016, Chemical reviews.

[182]  K. Yue,et al.  Toward Controlled Hierarchical Heterogeneities in Giant Molecules with Precisely Arranged Nano Building Blocks , 2016, ACS central science.

[183]  Stephen Z. D. Cheng,et al.  Synthesis, Self-assembly, and Crystal Structure of a Shape-Persistent Polyhedral-Oligosilsesquioxane-Nanoparticle-Tethered Perylene Diimide , 2010 .

[184]  Pierangelo Metrangolo,et al.  The Halogen Bond , 2016, Chemical reviews.

[185]  V. Percec,et al.  Supramolecular dendritic liquid quasicrystals , 2004, Nature.

[186]  Gautam R. Desiraju,et al.  Supramolecular Synthons in Crystal Engineering—A New Organic Synthesis , 1995 .

[187]  N. Hadjichristidis,et al.  50th Anniversary Perspective: Polymers with Complex Architectures , 2017 .

[188]  Stephen Z. D. Cheng,et al.  Two-dimensional nanocrystals of molecular Janus particles. , 2014, Journal of the American Chemical Society.

[189]  D. Lelie,et al.  DNA-guided crystallization of colloidal nanoparticles , 2008, Nature.

[190]  Matthew N. O’Brien,et al.  Nucleic acid-modified nanostructures as programmable atom equivalents: forging a new "table of elements". , 2013, Angewandte Chemie.

[191]  Matthew N. O’Brien,et al.  Anisotropic nanoparticle complementarity in DNA-mediated co-crystallization. , 2015, Nature materials.

[192]  Eungnak Han,et al.  One‐Step Direct‐Patterning Template Utilizing Self‐Assembly of POSS‐Containing Block Copolymers , 2009, Advanced materials.

[193]  Hao Yan,et al.  Programmable DNA self-assemblies for nanoscale organization of ligands and proteins. , 2005, Nano letters.

[194]  J. Moses,et al.  The growing applications of click chemistry. , 2007, Chemical Society reviews.

[195]  Y. Tu,et al.  The first example of main-chain cyclic azobenzene polymers. , 2010, Macromolecular rapid communications.

[196]  Weihua Li,et al.  Macromolecular metallurgy of binary mesocrystals via designed multiblock terpolymers. , 2014, Journal of the American Chemical Society.

[197]  G. Fredrickson,et al.  Fddd network phase in ABA triblock copolymer melts , 2016 .

[198]  M. Finn,et al.  Click Chemistry: Diverse Chemical Function from a Few Good Reactions. , 2001 .

[199]  D. Bruce,et al.  Shape amphiphiles: mixing rods and disks in liquid crystals. , 2003, Journal of the American Chemical Society.

[200]  David Schmidt,et al.  Perylene Bisimide Dye Assemblies as Archetype Functional Supramolecular Materials. , 2016, Chemical reviews.

[201]  Li-Tang Yan,et al.  Mesoscale Graphene-like Honeycomb Mono- and Multilayers Constructed via Self-Assembly of Coclusters. , 2017, Journal of the American Chemical Society.

[202]  W. Wang,et al.  Covalent organic frameworks. , 2012, Chemical Society reviews.

[203]  E. Thomas,et al.  Self-Assembled Smectic Phases in Rod-Coil Block Copolymers , 1996, Science.

[204]  B. Olsen,et al.  Phase Transitions in Asymmetric Rod−Coil Block Copolymers , 2006 .

[205]  V. Abetz,et al.  Phase behaviour and morphologies of block copolymers , 2005 .

[206]  Huilin Li,et al.  Diamond family of nanoparticle superlattices , 2016, Science.

[207]  Weihua Li,et al.  Nonclassical Spherical Packing Phases Self-Assembled from AB-Type Block Copolymers. , 2017, ACS macro letters.

[208]  Goran Ungar,et al.  Giant Supramolecular Liquid Crystal Lattice , 2003, Science.

[209]  Frank S. Bates,et al.  Dodecagonal quasicrystalline order in a diblock copolymer melt , 2016, Proceedings of the National Academy of Sciences.

[210]  Milner,et al.  Strong-segregation theory of bicontinuous phases in block copolymers. , 1998, Physical review letters.

[211]  Daniel J. Burke,et al.  Applications of orthogonal "click" chemistries in the synthesis of functional soft materials. , 2009, Chemical reviews.

[212]  F. Würthner,et al.  Living Supramolecular Polymerization of a Perylene Bisimide Dye into Fluorescent J-Aggregates. , 2017, Angewandte Chemie.

[213]  Weihua Li,et al.  Emergence and Stability of a Hybrid Lamella–Sphere Structure from Linear ABAB Tetrablock Copolymers , 2018 .

[214]  Chih-Hao Hsu,et al.  Molecular-Curvature-Induced Spontaneous Formation of Curved and Concentric Lamellae through Nucleation. , 2016, Angewandte Chemie.

[215]  Stephen Z. D. Cheng,et al.  Molecular Nanoparticles Are Unique Elements for Macromolecular Science: From “Nanoatoms” to Giant Molecules , 2014 .

[216]  Xiulin Zhu,et al.  Sequence-Controlled Polymers with Furan-Protected Maleimide as a Latent Monomer. , 2017, Angewandte Chemie.

[217]  V. Percec,et al.  Synthesis and retrostructural analysis of libraries of AB3 and constitutional isomeric AB2 phenylpropyl ether-based supramolecular dendrimers. , 2006, Journal of the American Chemical Society.

[218]  Lan Li,et al.  A rigid and healable polymer cross-linked by weak but abundant Zn(II)-carboxylate interactions , 2018, Nature Communications.

[219]  Vinothan N Manoharan,et al.  Dense Packing and Symmetry in Small Clusters of Microspheres , 2003, Science.

[220]  Kris T. Delaney,et al.  Stability of the A15 phase in diblock copolymer melts , 2019, Proceedings of the National Academy of Sciences.

[221]  N. Seeman,et al.  Design and self-assembly of two-dimensional DNA crystals , 1998, Nature.

[222]  F. Tezcan,et al.  Engineering the entropy-driven free-energy landscape of a dynamic nanoporous protein assembly , 2018, Nature Chemistry.

[223]  Loai K. E. A. Abdelmohsen,et al.  Polymersome magneto-valves for reversible capture and release of nanoparticles , 2014, Nature Communications.

[224]  R. Ho,et al.  Competitive Interactions of π–π Junctions and Their Role on Microphase Separation of Chiral Block Copolymers , 2017 .

[225]  M. R. Imam,et al.  Self-assembly of dendritic crowns into chiral supramolecular spheres. , 2009, Journal of the American Chemical Society.

[226]  Frank S. Bates,et al.  Block copolymer microstructures in the intermediate-segregation regime , 1997 .

[227]  N. Seeman Nucleic acid junctions and lattices. , 1982, Journal of theoretical biology.

[228]  V. Percec,et al.  Exploring and expanding the three-dimensional structural diversity of supramolecular dendrimers with the aid of libraries of alkali metals of their AB(3) minidendritic carboxylates. , 2002, Chemistry.

[229]  Stephen Z. D. Cheng,et al.  Effects of molecular geometry on the self-assembly of giant polymer-dendron conjugates in condensed state. , 2014, Soft matter.

[230]  Baoquan Ding,et al.  Pseudohexagonal 2D DNA crystals from double crossover cohesion. , 2004, Journal of the American Chemical Society.

[231]  Sharon C Glotzer,et al.  How do quasicrystals grow? , 2007, Physical review letters.

[232]  D. Arad,et al.  Self-Assembly of a Tetrahedral Lectin into Predesigned Diamondlike Protein Crystals. , 1999, Angewandte Chemie.

[233]  Chad A. Mirkin,et al.  Nanoparticle Superlattice Engineering with DNA , 2011, Science.

[234]  F. Bates,et al.  Unifying Weak- and Strong-Segregation Block Copolymer Theories , 1996 .

[235]  Richard Hoogenboom,et al.  Click chemistry beyond metal-catalyzed cycloaddition. , 2009, Angewandte Chemie.

[236]  Jean-Marie Lehn,et al.  Supramolecular Chemistry—Scope and Perspectives Molecules, Supermolecules, and Molecular Devices (Nobel Lecture) , 1988 .

[237]  Jean-Marie Lehn,et al.  Supramolecular Chemistry: Concepts And Perspectives , 2014 .

[238]  Li-Tang Yan,et al.  A Filled-Honeycomb-Structured Crystal Formed by Self-Assembly of a Janus Polyoxometalate-Silsesquioxane (POM-POSS) Co-Cluster. , 2015, Angewandte Chemie.

[239]  E. Kramer,et al.  Tunable, High Modulus Hydrogels Driven by Ionic Coacervation , 2011, Advanced materials.

[240]  Chad A. Mirkin,et al.  Crystal engineering with DNA , 2019, Nature Reviews Materials.

[241]  S. Picken,et al.  Induced Liquid Crystalline Diversity in Molecular and Polymeric Charge-Transfer Complexes of Discotic Mesogens , 2002 .

[242]  G. Grason,et al.  Geometric theory of diblock copolymer phases. , 2003, Physical review letters.

[243]  I. Capek Dispersions of polymer ionomers: I. , 2004, Advances in colloid and interface science.

[244]  M. Grinstaff,et al.  Ionic Supramolecular Assemblies , 2013 .

[245]  Jian Zhang,et al.  DNA-nanoparticle superlattices formed from anisotropic building blocks. , 2010, Nature materials.

[246]  Jeremiah A. Johnson,et al.  Janus Graft Block Copolymers: Design of a Polymer Architecture for Independently Tuned Nanostructures and Polymer Properties. , 2018, Angewandte Chemie.

[247]  Allie C. Obermeyer,et al.  Three-Dimensional Ordered Antibody Arrays Through Self-Assembly of Antibody-Polymer Conjugates. , 2017, Angewandte Chemie.

[248]  A. Heeger,et al.  A Porphyrin–Fullerene Dyad with a Supramolecular “Double‐Cable” Structure as a Novel Electron Acceptor for Bulk Heterojunction Polymer Solar Cells , 2011, Advanced materials.

[249]  B. Olsen,et al.  Self-assembly of rod–coil block copolymers , 2008 .

[250]  B. Olsen,et al.  Structure And Thermodynamics of Weakly Segregated Rod-Coil Block Copolymers , 2005 .

[251]  Chengde Mao,et al.  Self-assembly of hexagonal DNA two-dimensional (2D) arrays. , 2005, Journal of the American Chemical Society.

[252]  Junfei Duan,et al.  Triphenylene-Based Side Chain Liquid Crystalline Block Copolymers Containing a PEG block: Controlled Synthesis, Microphase Structures Evolution and Their Interplay with Discotic Mesogenic Orders , 2013 .

[253]  Xing Fan,et al.  Mesogen-jacketed liquid crystalline polymers. , 2010, Chemical Society reviews.

[254]  E. W. Meijer,et al.  Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. , 1997, Science.

[255]  Stephen Z. D. Cheng,et al.  Tuning “thiol-ene” reactions toward controlled symmetry breaking in polyhedral oligomeric silsesquioxanes , 2014 .

[256]  S. Kitagawa,et al.  Paraffinic metal-organic polyhedrons: solution-processable porous modules exhibiting three-dimensional molecular order. , 2018, Chemical communications.

[257]  E. Thomas,et al.  Zigzag Morphology of a Poly(styrene-b-hexyl isocyanate) Rod-Coil Block Copolymer , 1995 .

[258]  Bartlett,et al.  Superlattice formation in binary mixtures of hard-sphere colloids. , 1992, Physical review letters.

[259]  J. Reif,et al.  Construction, analysis, ligation, and self-assembly of DNA triple crossover complexes , 2000 .

[260]  V. Percec,et al.  A Tetragonal Phase Self-Organized from Unimolecular Spheres Assembled from a Substituted Poly(2-oxazoline) , 2017 .

[261]  V. Percec,et al.  From structure to function via complex supramolecular dendrimer systems. , 2015, Chemical Society reviews.

[262]  Hussein A. Younus,et al.  Metal-organic molecular cages: applications of biochemical implications. , 2015, Chemical Society reviews.

[263]  G. Ungar,et al.  Body-centred cubic packing of spheres - the ultimate thermotropic assembly mode for highly divergent dendrons. , 2017, Nanoscale horizons.

[264]  M. R. Imam,et al.  Hollow spherical supramolecular dendrimers. , 2008, Journal of the American Chemical Society.

[265]  Eric W. Cochran,et al.  Stability of the Gyroid Phase in Diblock Copolymers at Strong Segregation , 2006 .

[266]  R. Grubbs,et al.  Precisely tunable photonic crystals from rapidly self-assembling brush block copolymer blends. , 2012, Angewandte Chemie.

[267]  W. Zin,et al.  Supramolecular structures from rod-coil block copolymers. , 2001, Chemical reviews.

[268]  C. M. Bates,et al.  50th Anniversary Perspective: Block Polymers—Pure Potential , 2017 .

[269]  P. D. Lickiss,et al.  Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes. , 2010, Chemical reviews.

[270]  Abhiram Reddy,et al.  A cornerstone of complex crystals , 2019, Nature Chemistry.

[271]  S. Milner Chain Architecture and Asymmetry in Copolymer Microphases , 1994 .

[272]  M. Mahanthappa,et al.  Characteristics of lamellar mesophases in strongly segregated broad dispersity ABA triblock copolymers , 2014 .

[273]  J. Watkins,et al.  Polystyrene-block-poly(ethylene oxide) Bottlebrush Block Copolymer Morphology Transitions: Influence of Side Chain Length and Volume Fraction , 2017 .

[274]  Owen R. Lozman,et al.  Discotic liquid crystals 25 years on , 2002 .

[275]  Nicolas Vogel,et al.  Advances in colloidal assembly: the design of structure and hierarchy in two and three dimensions. , 2015, Chemical reviews.