Net flow of compressible viscous liquids induced by travelling waves in porous media
暂无分享,去创建一个
The influence of ultrasonic radiation on the flow of a liquid through a porous medium is analyzed. The analysis is based on a mechanism proposed by Ganiev et al. according to which ultrasonic radiation deforms the walls of the pores in the shape of travelling transversal waves. Like in peristaltic pumping, the travelling transversal wave induces a net flow of the liquid inside the pore. In this article, the wave amplitude is related to the power output of an acoustic source, while the wave speed is expressed in terms of the shear modulus of the porous medium. The viscosity as well as the compressibility of the liquid are taken into account. The Navier–Stokes equations for an axisymmetric cylindrical pore are solved by means of a perturbation analysis, in which the ratio of the wave amplitude to the radius of the pore is the small parameter. In the second-order approximation a net flow induced by the travelling wave is found. For various values of the compressibility of the liquid, the Reynolds number and the frequency of the wave, the net flow rate is calculated. The calculations disclose that the compressibility of the liquid has a strong influence on the net flow induced. Furthermore, by a comparison with the flow induced by the pressure gradient in an oil reservoir, the net flow induced by a travelling wave can not be neglected, although it is a second-order effect.
[1] S. Weinberg,et al. Peristaltic pumping with long wavelengths at low Reynolds number , 1968, Journal of Fluid Mechanics.
[2] M. Lighthill,et al. Waves In Fluids , 2002 .
[3] K. Ayukawa,et al. Peristaltic pumping in circular cylindrical tubes: a numerical study of fluid transport and its efficiency , 1988, Journal of Fluid Mechanics.
[4] Y. Fung,et al. Peristaltic Waves in Circular Cylindrical Tubes , 1969 .
[5] J. C. Jaeger,et al. Fundamentals of rock mechanics , 1969 .