Evolution of small defect clusters in ion-irradiated 3C-SiC: Combined cluster dynamics modeling and experimental study

[1]  K. Nordlund,et al.  Subcascade formation and defect cluster size scaling in high-energy collision events in metals , 2016 .

[2]  K. Sridharan,et al.  Size distribution of black spot defects and their contribution to swelling in irradiated SiC , 2016 .

[3]  D. Morgan,et al.  Radiation-induced mobility of small defect clusters in covalent materials , 2016, 1608.01623.

[4]  K. Nordlund,et al.  Direct observation of size scaling and elastic interaction between nano-scale defects in collision cascades , 2015, 1503.02922.

[5]  D. Morgan,et al.  Accelerated atomistic simulation study on the stability and mobility of carbon tri-interstitial cluster in cubic SiC , 2014, 1608.01366.

[6]  W. J. Weber,et al.  Competing effects of electronic and nuclear energy loss on microstructural evolution in ionic-covalent materials , 2014 .

[7]  G. Roma,et al.  First principles defect energetics for simulations of silicon carbide under irradiation: Kinetic mechanisms of silicon di-interstitials , 2014 .

[8]  S. Dudarev,et al.  Elastic trapping of dislocation loops in cascades in ion-irradiated tungsten foils , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[9]  T. Iwai,et al.  Defect formation in iron by MeV ion beam investigated with a positron beam and electrical resistivity measurement , 2013 .

[10]  E. Meslin,et al.  Radiation-induced precipitation in a ferritic model alloy: An experimental and theoretical study , 2013 .

[11]  Dane Morgan,et al.  Energy barriers for point-defect reactions in 3C-SiC , 2013 .

[12]  A. E. Sand,et al.  High-energy collision cascades in tungsten: Dislocation loops structure and clustering scaling laws , 2013, 1306.3824.

[13]  B. Wirth,et al.  Primary defect production by high energy displacement cascades in molybdenum , 2013 .

[14]  Steven J. Zinkle,et al.  Materials Challenges in Nuclear Energy , 2013 .

[15]  D. Morgan,et al.  Carbon tri-interstitial defect: A model for the DII center , 2012 .

[16]  T. Iwai,et al.  In situ positron beam Doppler broadening measurement of ion-irradiated metals – Current status and potential , 2012 .

[17]  E. Kozeschnik,et al.  Atomistic and continuums modeling of cluster migration and coagulation in precipitation reactions , 2012, Computational materials science.

[18]  B. Wirth,et al.  Combining in situ transmission electron microscopy irradiation experiments with cluster dynamics modeling to study nanoscale defect agglomeration in structural metals , 2012 .

[19]  W. J. Weber,et al.  Radiation effects in SiC for nuclear structural applications , 2012 .

[20]  Dane Morgan,et al.  Radiation interaction with tilt grain boundaries in β-SiC , 2012 .

[21]  A. Kohyama,et al.  Composition dependence of formation energy of self-interstitial atom clusters in β-SiC: Molecular dynamics and molecular statics calculations , 2011 .

[22]  Vasily V. Bulatov,et al.  Stochastic cluster dynamics method for simulations of multispecies irradiation damage accumulation , 2011 .

[23]  D. Morgan,et al.  Ab initio based rate theory model of radiation induced amorphization in β-SiC , 2011 .

[24]  D. Morgan,et al.  Ag diffusion in cubic silicon carbide , 2011 .

[25]  B. Wirth,et al.  Modeling spatially dependent kinetics of helium desorption in BCC iron following He ion implantation , 2010 .

[26]  D. Morgan,et al.  Effects of grain size and grain boundaries on defect production in nanocrystalline 3C–SiC , 2010 .

[27]  Thomas Jourdan,et al.  Influence of cluster mobility on Cu precipitation in α-Fe: A cluster dynamics modeling , 2010 .

[28]  T. Onitsuka,et al.  A positron beam study on vacancy formation in iron by ion beam irradiation at low temperature , 2010 .

[29]  Y. Katoh,et al.  Analyzing Irradiation‐Induced Creep of Silicon Carbide , 2009 .

[30]  A. Kohyama,et al.  Energetics of defects in β-SiC under irradiation , 2009 .

[31]  V. Slezov Basic Equations: Determination of the Coefficients of Emission in Nucleation Theory , 2009 .

[32]  Alain Barbu,et al.  Cluster-dynamics modelling of defects in α-iron under cascade damage conditions , 2008 .

[33]  C. Domain,et al.  Mean field rate theory and object kinetic Monte Carlo: A comparison of kinetic models , 2008 .

[34]  Y. Katoh,et al.  Microstructures of beta-silicon carbide after irradiation creep deformation at elevated temperatures , 2008 .

[35]  E. Lara‐Curzio,et al.  Mechanical Properties and Performance of Engineering Ceramics and Composites III , 2007 .

[36]  Y. Katoh,et al.  Handbook of SiC properties for fuel performance modeling , 2007 .

[37]  Alain Barbu,et al.  Cluster Dynamics Modeling of Materials: Advantages and Limitations , 2007, 0709.1846.

[38]  Y. Katoh,et al.  Swelling of SiC at intermediate and high irradiation temperatures , 2007 .

[39]  N. Y. Garces,et al.  Annealing of Multivacancy Defects in 4H-SiC , 2006 .

[40]  S. Dudarev,et al.  Simulations of weak-beam diffraction contrast images of dislocation loops by the many-beam Howie–Basinski equations , 2006 .

[41]  L. Malerba,et al.  Molecular dynamics simulation of displacement cascades in α-Fe: A critical review , 2006 .

[42]  A. Kohyama,et al.  Microstructural development in cubic silicon carbide during irradiation at elevated temperatures , 2006 .

[43]  James E. Hutchison,et al.  Analysis of Nanoparticle Transmission Electron Microscopy Data Using a Public- Domain Image-Processing Program, Image , 2006 .

[44]  Carol S. Woodward,et al.  Enabling New Flexibility in the SUNDIALS Suite of Nonlinear and Differential/Algebraic Equation Solvers , 2020, ACM Trans. Math. Softw..

[45]  E. Clouet,et al.  Precipitation kinetics of Al3Zr and Al3Sc in aluminum alloys modeled with cluster dynamics , 2005, cond-mat/0503485.

[46]  R. Devanathan,et al.  The efficiency of damage production in silicon carbide , 2004 .

[47]  W. J. Weber,et al.  Ion-beam induced defects and nanoscale amorphous clusters in silicon carbide , 2004 .

[48]  Alexander Mattausch,et al.  Ab initio study of the migration of intrinsic defects in 3C-SiC , 2003, cond-mat/0309704.

[49]  Fei Gao,et al.  Cascade overlap and amorphization in 3C-SiC: Defect accumulation, topological features, and disordering , 2002 .

[50]  A. Barbu,et al.  Microstructure modelling of ferritic alloys under high flux 1 MeV electron irradiations , 2002 .

[51]  William J. Weber,et al.  Atomic scale simulation of defect production in irradiated 3C-SiC , 2001 .

[52]  F. Gao,et al.  Primary damage states produced by Si and Au recoils in SiC: A molecular dynamics and experimental investigation , 2001 .

[53]  Fei Gao,et al.  Atomic-scale simulation of 50 keV Si displacement cascades in β-SiC , 2000 .

[54]  S. Yip,et al.  Atomistic modeling of finite-temperature properties of crystalline β-SiC: II. Thermal conductivity and effects of point defects , 1998 .

[55]  Toyohiko Yano,et al.  X-ray diffractometry and high-resolution electron microscopy of neutron-irradiated SiC to a fluence of 1.9×1027 n/m2 , 1998 .

[56]  N. Ghoniem,et al.  A swelling model for stoichiometric SiC at temperatures below 1000°C under neutron irradiation , 1997 .

[57]  R. Stoller Primary damage formation in irradiated materials , 1996 .

[58]  T. Muroga,et al.  Free defect production efficiency for heavy ion irradiation estimated by loop growth measurements , 1994 .

[59]  L. Rehn,et al.  Growth rate of dislocation loop in FeNiCr alloy under Kr+ ion and electron irradiation☆ , 1992 .

[60]  H. Wollenberger,et al.  Production rate of freely migrating defects for ion irradiation , 1992 .

[61]  R. Egerton,et al.  EELS log-ratio technique for specimen-thickness measurement in the TEM. , 1988, Journal of electron microscopy technique.

[62]  R. Egerton,et al.  Measurement of local thickness by electron energy-loss spectroscopy , 1987 .

[63]  J. Ziegler The stopping and range of ions in solids vol 1 : The stopping and ranges of ions in matter , 2013 .

[64]  R. Averback,et al.  Relative efficiencies of different ions for producing freely migrating defects , 1984 .

[65]  M. Robinson,et al.  A proposed method of calculating displacement dose rates , 1975 .

[66]  R. J. Price,et al.  Thermal conductivity of neutron-irradiated pyrolytic β-silicon carbide , 1973 .