Semi-infinite optimization formulation to obtain accurate phenomenological models for all phases of ferroelectric-ferroelastic crystals
暂无分享,去创建一个
[1] W. J. Merz,et al. Double Hysteresis Loop of BaTiO 3 at the Curie Point , 1953 .
[2] J. Gonzalo,et al. Ferroelectric free energy expansion coefficients from double hysteresis loops , 1971 .
[3] W. Niesel. Die Dielektrizitätskonstanten heterogener Mischkörper aus isotropen und anisotropen Substanzen , 1952 .
[4] Maurice E. Drougard,et al. The Effect of an Electric Field on the Transitions of Barium Titanate , 1957, IBM J. Res. Dev..
[5] J. Willis,et al. On methods for bounding the overall properties of nonlinear composites , 1991 .
[6] A. Hippel. Ferroelectricity, Domain Structure, and Phase Transitions of Barium Titanate , 1950 .
[7] T. M. Williams. Practical Methods of Optimization. Vol. 2 — Constrained Optimization , 1982 .
[8] M. Fejer,et al. Nonlinear elasticity in proper ferroelastics , 1983 .
[9] D. Bergman. Effective Medium Approximation for Nonlinear Conductivity of a Composite Medium , 1991 .
[10] Salvatore Torquato,et al. Conductivity tensor of anisotropic composite media from the microstructure , 1990 .
[11] A. F. Devonshire. XCVI. Theory of barium titanate , 1949 .
[12] Vinay Srinivas,et al. Accurate phenomenological models for all four phases of BaTiO3 via semi-infinite optimization , 1995 .
[13] Pedro Ponte Castañeda. The effective mechanical properties of nonlinear isotropic composites , 1991 .
[14] Warren P. Mason,et al. Electrostrictive Effect in Barium Titanate Ceramics , 1948 .
[15] R. Neurgaonkar,et al. Phenomenological analysis of tetragonal tungsten bronze ferroelectrics , 1992, Journal of Materials Science.
[16] S. Torquato,et al. Improved Bounds on the Effective Elastic Moduli of Random Arrays of Cylinders , 1992 .
[17] W. Buessem,et al. Phenomenological Theory of High Permittivity in Fine‐Grained Barium Titanate , 1966 .
[18] S. L. Swartz,et al. Topics in electronic ceramics , 1990 .
[19] L. Vu-Quoc,et al. A new methodology to obtain accurate models for ferroelectrics with application to BaTiO/sub 3/ , 1994 .
[20] E. Polak. On the mathematical foundations of nondifferentiable optimization in engineering design , 1987 .
[21] Andrew Herczog,et al. Microcrystalline BaTiO3 by Crystallization from Glass , 1964 .
[22] D. Meyerhofer. Transition to the Ferroelectric State in Barium Titanate , 1958 .
[23] Masakazu Marutake,et al. A Calculation of Physical Constants of Ceramic Barium Titanate , 1956 .
[24] M. Grimsditch,et al. The elastic and electromechanical properties of tetragonal BaTiO3 single crystals , 1991 .
[25] D. R. Young,et al. Triple Hysteresis Loops and the Free-Energy Function in the Vicinity of the 5°C Transition in BaTiO 3 , 1956 .
[26] Salvatore Torquato,et al. Random Heterogeneous Media: Microstructure and Improved Bounds on Effective Properties , 1991 .
[27] A. F. Devonshire. CIX. Theory of barium titanate—Part II , 1951 .