Multi-rendezvous Spacecraft Trajectory Optimization with Beam P-ACO

The design of spacecraft trajectories for missions visiting multiple celestial bodies is here framed as a multi-objective bilevel optimization problem. A comparative study is performed to assess the performance of different Beam Search algorithms at tackling the combinatorial problem of finding the ideal sequence of bodies. Special focus is placed on the development of a new hybridization between Beam Search and the Population-based Ant Colony Optimization algorithm. An experimental evaluation shows all algorithms achieving exceptional performance on a hard benchmark problem. It is found that a properly tuned deterministic Beam Search always outperforms the remaining variants. Beam P-ACO, however, demonstrates lower parameter sensitivity, while offering superior worst-case performance. Being an anytime algorithm, it is then found to be the preferable choice for certain practical applications.

[1]  Andrew W. Moore,et al.  The Racing Algorithm: Model Selection for Lazy Learners , 1997, Artificial Intelligence Review.

[2]  Dario Izzo,et al.  GTOC5: Results from the European Space Agency and University of Florence , 2014 .

[3]  Kathleen C. Howell,et al.  Design of End-to-End Trojan Asteroid Rendezvous Tours Incorporating Scientific Value , 2016 .

[4]  Dario Izzo,et al.  Designing Complex Interplanetary Trajectories for the Global Trajectory Optimization Competitions , 2015, 1511.00821.

[5]  G. E. Gad,et al.  Space trajectories optimization using variable-chromosome-length genetic algorithms , 2011 .

[6]  D. Izzo Revisiting Lambert’s problem , 2014, 1403.2705.

[7]  Claude Sammut Beam Search , 2017, Encyclopedia of Machine Learning and Data Mining.

[8]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[9]  Christian Blum,et al.  Beam-ACO - hybridizing ant colony optimization with beam search: an application to open shop scheduling , 2005, Comput. Oper. Res..

[10]  Ilia S. Grigoriev,et al.  Choosing promising sequences of asteroids , 2013, Autom. Remote. Control..

[11]  Massimiliano Vasile,et al.  MGA trajectory planning with an ACO-inspired algorithm , 2010, ArXiv.

[12]  Thomas Stützle,et al.  A detailed analysis of the population-based ant colony optimization algorithm for the TSP and the QAP , 2011, GECCO.

[13]  Michael Guntsch Ant algorithms in stochastic and multi-criteria environments , 2004 .

[14]  Dario Izzo,et al.  FOR MASSIVELY PARALLEL OPTIMIZATION IN ASTRODYNAMICS ( THE CASE OF INTERPLANETARY TRAJECTORY OPTIMIZATION ) , 2012 .

[15]  Massimiliano Vasile,et al.  Automated Multigravity Assist Trajectory Planning with a Modified Ant Colony Algorithm , 2010, J. Aerosp. Comput. Inf. Commun..

[16]  Michael Guntsch,et al.  Applying Population Based ACO to Dynamic Optimization Problems , 2002, Ant Algorithms.

[17]  Dario Izzo,et al.  Search for a grand tour of the jupiter galilean moons , 2013, GECCO '13.

[18]  Martin Middendorf,et al.  Solving Multi-criteria Optimization Problems with Population-Based ACO , 2003, EMO.

[19]  Dario Izzo,et al.  Evolving Solutions to TSP Variants for Active Space Debris Removal , 2015, GECCO.

[20]  Manuel López-Ibáñez,et al.  Ant colony optimization , 2010, GECCO '10.

[21]  Zbigniew Michalewicz,et al.  Benchmarking Optimization Algorithms: An Open Source Framework for the Traveling Salesman Problem , 2014, IEEE Computational Intelligence Magazine.

[22]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[23]  Kalyanmoy Deb,et al.  Evolutionary Bilevel Optimization: An Introduction and Recent Advances , 2017, Recent Advances in Evolutionary Multi-objective Optimization.

[24]  Carlos M. Fonseca,et al.  Inferential Performance Assessment of Stochastic Optimisers and the Attainment Function , 2001, EMO.

[25]  Martin Middendorf,et al.  A Population Based Approach for ACO , 2002, EvoWorkshops.

[26]  Wheeler Ruml,et al.  A Comparison of Greedy Search Algorithms , 2010, SOCS.