A Study of Preconditioners for Network Interior Point Methods

We study and compare preconditioners available for network interior point methods. We derive upper bounds for the condition number of the preconditioned matrices used in the solution of systems of linear equations defining the algorithm search directions. The preconditioners are tested using PDNET, a state-of-the-art interior point code for the minimum cost network flow problem. A computational comparison using a set of standard problems improves the understanding of the effectiveness of preconditioners in network interior point methods.

[1]  Anthony V. Fiacco,et al.  Nonlinear programming;: Sequential unconstrained minimization techniques , 1968 .

[2]  Yin Zhang,et al.  On the Convergence of a Class of Infeasible Interior-Point Methods for the Horizontal Linear Complementarity Problem , 1994, SIAM J. Optim..

[3]  Stefania Bellavia,et al.  An inexact interior point method for monotone NCP , 1999 .

[4]  O. Axelsson Iterative solution methods , 1995 .

[5]  Shinji Mizuno,et al.  Global and polynomial-time convergence of an infeasible-interior-point algorithm using inexact computation , 1997, Math. Program..

[6]  Trond Steihaug,et al.  Truncated-newtono algorithms for large-scale unconstrained optimization , 1983, Math. Program..

[7]  Mauricio G. C. Resende,et al.  Data Structures and Programming Techniques for the Implementation of Karmarkar's Algorithm , 1989, INFORMS J. Comput..

[8]  L. Portugal,et al.  A truncated primal‐infeasible dual‐feasible network interior point method , 2000 .

[9]  David K. Smith Theory of Linear and Integer Programming , 1987 .

[10]  N. Megiddo Pathways to the optimal set in linear programming , 1989 .

[11]  Cristian S. Calude,et al.  Discrete Mathematics and Theoretical Computer Science , 2003, Lecture Notes in Computer Science.

[12]  Stephen J. Wright Modified Cholesky Factorizations in Interior-Point Algorithms for Linear Programming , 1999, SIAM J. Optim..

[13]  Trond Steihaug,et al.  On the Convergence of an Inexact Primal-Dual Interior Point Method for Linear Programming , 2005, LSSC.

[14]  Mauricio G. C. Resende,et al.  An Implementation of the Dual Affine Scaling Algorithm for Minimum-Cost Flow on Bipartite Uncapacitated Networks , 1993, SIAM J. Optim..

[15]  Stephen J. Wright Primal-Dual Interior-Point Methods , 1997, Other Titles in Applied Mathematics.

[16]  Kees Roos,et al.  Degeneracy in interior point methods for linear programming: a survey , 1993, Ann. Oper. Res..

[17]  David S. Johnson,et al.  Network Flows and Matching: First DIMACS Implementation Challenge , 1993 .

[18]  Shinji Mizuno,et al.  A primal—dual infeasible-interior-point algorithm for linear programming , 1993, Math. Program..

[19]  Clyde L. Monma,et al.  An Implementation of a Primal-Dual Interior Point Method for Linear Programming , 1989, INFORMS J. Comput..

[20]  Joaquim Júdice,et al.  An Investigation of Interior-Point Algorithms for the Linear Transportation Problem , 1996, SIAM J. Sci. Comput..

[21]  Gene H. Golub,et al.  Matrix computations , 1983 .

[22]  Mauricio G. C. Resende,et al.  An Efficient Implementation of a Network Interior Point Method , 1991, Network Flows And Matching.

[23]  Shinji Mizuno,et al.  Convergence of a Class of Inexact Interior-Point Algorithms for Linear Programs , 1999, Math. Oper. Res..

[24]  M. J. D. Powell,et al.  Nonlinear Programming—Sequential Unconstrained Minimization Techniques , 1969 .

[25]  R. Dembo,et al.  INEXACT NEWTON METHODS , 1982 .

[26]  Quey-Jen Yeh,et al.  A reduced dual affine scaling algorithm for solving assignment and transportation problems , 1989 .