Exact solution of a KdV equation with variable coefficients

A simple direct method is developed for finding exact solutions of nonlinear equations with variable coefficients. The (1 + 1)-dimensional KdV equation is used as an example to elucidate the solution procedure, and its exact solution is obtained.

[1]  A. S. Abdel Rady,et al.  Multi soliton solution for the system of Coupled Korteweg-de Vries equations , 2009, Appl. Math. Comput..

[2]  J. Cole,et al.  Similarity methods for differential equations , 1974 .

[3]  Wolfgang K. Schief,et al.  Virasoro structure and localized excitations of the LKR system , 2003 .

[4]  V. Karpman An asymptotic solution of the Korteweg-De Vries equation , 1967 .

[5]  Norman J. Zabusky,et al.  Solitons and Bound States of the Time-Independent Schrödinger Equation , 1968 .

[6]  Alexandre T. Filippov The Versatile Soliton , 2000 .

[7]  M. Kruskal,et al.  New similarity reductions of the Boussinesq equation , 1989 .

[8]  N. Zabusky,et al.  Interaction of "Solitons" in a Collisionless Plasma and the Recurrence of Initial States , 1965 .

[9]  M. S. Ismail Numerical solution of complex modified Korteweg-de Vries equation by collocation method , 2009 .

[10]  J. Craggs Applied Mathematical Sciences , 1973 .

[11]  Robert M. Miura,et al.  Korteweg-de Vries Equation and Generalizations. I. A Remarkable Explicit Nonlinear Transformation , 1968 .

[12]  C. S. Gardner,et al.  Method for solving the Korteweg-deVries equation , 1967 .

[13]  Lixin Tian,et al.  Generalized Solitary Solution and Periodic Solution of the combined KdV-mKdV Equation with Variable Coefficients using the Exp-function Method , 2009 .

[14]  Hong-Cai Ma,et al.  LETTER TO THE EDITOR: Non-Lie symmetry groups of (2+1)-dimensional nonlinear systems obtained from a simple direct method , 2005 .

[15]  G. Bluman,et al.  Symmetry and Integration Methods for Differential Equations , 2002 .