An M/G/c queue in which the number of servers required is random

On considere un systeme d'attente a s serveurs identiques dans lequel les clients arrivent selon un processus de Poisson avec un taux λ et demandent les services de i≤s serveurs avec la probabilite c i , 1≤i≤s. On presente un algorithme pour calculer les approximations des probabilites asymptotiques de la longueur de la file

[1]  Kenneth Chelst,et al.  Multiple Unit Dispatches in Emergency Services: Models to Estimate System Performance , 1981 .

[2]  Ward Whitt,et al.  Approximating a Point Process by a Renewal Process, I: Two Basic Methods , 1982, Oper. Res..

[3]  Peter Kolesar,et al.  The Feasibility of One-Officer Patrol in New York City , 1984 .

[4]  Linda Green,et al.  Technical Note - A Limit Theorem on Subintervals of Interrenewal Times , 1982, Oper. Res..

[5]  Awi Federgruen,et al.  COMPUTATION OF THE STATIONARY DISTRIBUTION OF THE QUEUE SIZE IN AN M/G/1 QUEUEING SYSTEM , 1979 .

[6]  A. Federgruen,et al.  Approximations for the steady-state probabilities in the M/G/c queue , 1981, Advances in Applied Probability.

[7]  L. Gimpelson Analysis of Mixtures of Wide- and Narrow-Band Traffic , 1965 .

[8]  Avadhesh K. Nigam Analysis for a Satellite Communications System , 1975 .

[9]  Linda V. Green,et al.  A Multiple Dispatch Queueing Model of Police Patrol Operations , 1984 .

[10]  S. Stidham Regenerative processes in the theory of queues, with applications to the alternating-priority queue , 1972, Advances in Applied Probability.

[11]  S. A. Nozaki,et al.  Approximations in finite-capacity multi-server queues by Poisson arrivals , 1978, Journal of Applied Probability.

[12]  Eric Wolman The camp-on problem for multiple-address traffic , 1972 .

[13]  Kenneth J. Omahen Capacity Bounds for Multiresource Queues , 1977, JACM.

[14]  Linda Green,et al.  A Queueing System in Which Customers Require a Random Number of Servers , 1980, Oper. Res..

[15]  H. C. Tijms,et al.  A simple proof of the equivalence of the limiting distributions of the continuous-time and the embedded process of the queue size in the m/g/1 queue , 1976 .

[16]  J. Chaiken,et al.  A Patrol Car Allocation Model: Background , 1978 .

[17]  J. S. Kaufman,et al.  Sizing a Message Store Subject to Blocking Criteria , 1979, Performance.