Role of CaMKII in cardiac arrhythmias.

[1]  Sathya D. Unudurthi,et al.  Ankyrin-G Coordinates Intercalated Disc Signaling Platform to Regulate Cardiac Excitability In Vivo , 2014, Circulation research.

[2]  U. Ravens,et al.  Arrhythmias, elicited by catecholamines and serotonin, vanish in human chronic atrial fibrillation , 2014, Proceedings of the National Academy of Sciences.

[3]  Ludovic C. Gillet,et al.  PDZ Domain–Binding Motif Regulates Cardiomyocyte Compartment-Specific NaV1.5 Channel Expression and Function , 2014, Circulation.

[4]  D. Bers,et al.  Ca2+ current facilitation is CaMKII-dependent and has arrhythmogenic consequences , 2014, Front. Pharmacol..

[5]  P. Schrauwen,et al.  High-Fat Diet–Induced Mitochondrial Biogenesis Is Regulated by Mitochondrial-Derived Reactive Oxygen Species Activation of CaMKII , 2014, Diabetes.

[6]  K. Kaestner,et al.  Metabolic memory of ß-cells controls insulin secretion and is mediated by CaMKIIa , 2014, Molecular metabolism.

[7]  Panagiota T. Foteinou,et al.  Modeling CaMKII-mediated regulation of L-type Ca2+ channels and ryanodine receptors in the heart , 2014, Front. Pharmacol..

[8]  V. Maltsev,et al.  Numerical Modeling Calcium and CaMKII Effects in the SA Node , 2014, Front. Pharmacol..

[9]  S. Nattel,et al.  Ryanodine Receptor–Mediated Calcium Leak Drives Progressive Development of an Atrial Fibrillation Substrate in a Transgenic Mouse Model , 2014, Circulation.

[10]  Yuejin Wu,et al.  CaMKII in sinoatrial node physiology and dysfunction , 2014, Front. Pharmacol..

[11]  A. McCulloch,et al.  A novel computational model of mouse myocyte electrophysiology to assess the synergy between Na+ loading and CaMKII , 2014, The Journal of physiology.

[12]  L. Maier,et al.  CaMKII regulation of cardiac K channels , 2014, Front. Pharmacol..

[13]  H. Schulman,et al.  CaMKII inhibitors: from research tools to therapeutic agents , 2014, Front. Pharmacol..

[14]  Birce Onal,et al.  Modeling CaMKII in cardiac physiology: from molecule to tissue , 2014, Front. Pharmacol..

[15]  E. Olson,et al.  Activation of calcium/calmodulin-dependent protein kinase II in obesity mediates suppression of hepatic insulin signaling. , 2013, Cell metabolism.

[16]  Mark E. Anderson,et al.  βIV-Spectrin and CaMKII facilitate Kir6.2 regulation in pancreatic beta cells , 2013, Proceedings of the National Academy of Sciences.

[17]  Gerald W. Hart,et al.  Diabetic Hyperglycemia activates CaMKII and Arrhythmias by O linked Glycosylation , 2013, Nature.

[18]  G. Hasenfuss,et al.  Role of late sodium current as a potential arrhythmogenic mechanism in the progression of pressure-induced heart disease. , 2013, Journal of molecular and cellular cardiology.

[19]  I. Efimov,et al.  Diabetes increases mortality after myocardial infarction by oxidizing CaMKII. , 2013, The Journal of clinical investigation.

[20]  Cheryl F. Lichti,et al.  Mass spectrometry-based identification of native cardiac Nav1.5 channel α subunit phosphorylation sites. , 2012, Journal of proteome research.

[21]  Mark E. Anderson,et al.  Regulation of Cardiac ATP-sensitive Potassium Channel Surface Expression by Calcium/Calmodulin-dependent Protein Kinase II* , 2012, The Journal of Biological Chemistry.

[22]  X. Wehrens,et al.  CaMKII inhibition rescues proarrhythmic phenotypes in the model of human ankyrin-B syndrome. , 2012, Heart rhythm.

[23]  Mark E. Anderson,et al.  Ca2+/Calmodulin-Dependent Protein Kinase II–Based Regulation of Voltage-Gated Na+ Channel in Cardiac Disease , 2012, Circulation.

[24]  P. Binkley,et al.  CaMKII-Based Regulation of Voltage-Gated Na+ Channel in Cardiac Disease , 2012 .

[25]  Mark E. Anderson,et al.  Calmodulin-dependent protein kinase II: linking heart failure and arrhythmias. , 2012, Circulation research.

[26]  D. Bers,et al.  Ca2+/Calmodulin-dependent Protein Kinase II (CaMKII) Regulates Cardiac Sodium Channel NaV1.5 Gating by Multiple Phosphorylation Sites* , 2012, The Journal of Biological Chemistry.

[27]  D. Bers,et al.  Location Matters: Clarifying the Concept of Nuclear and Cytosolic CaMKII Subtypes , 2011, Circulation research.

[28]  G. Fishman,et al.  Subcellular heterogeneity of sodium current properties in adult cardiac ventricular myocytes. , 2011, Heart rhythm.

[29]  Niels Voigt,et al.  Oxidized CaMKII causes cardiac sinus node dysfunction in mice. , 2011, The Journal of clinical investigation.

[30]  Jeffrey J Saucerman,et al.  Synergy between CaMKII substrates and β-adrenergic signaling in regulation of cardiac myocyte Ca(2+) handling. , 2010, Biophysical journal.

[31]  Thomas J Hund,et al.  A β(IV)-spectrin/CaMKII signaling complex is essential for membrane excitability in mice. , 2010, The Journal of clinical investigation.

[32]  P. Mohler,et al.  Ankyrin-B Regulates Kir6.2 Membrane Expression and Function in Heart* , 2010, The Journal of Biological Chemistry.

[33]  Y. Xiang,et al.  Cardiomyocytes with disrupted CFTR function require CaMKII and Ca2+‐activated Cl− channel activity to maintain contraction rate , 2010, The Journal of physiology.

[34]  R. Colbran,et al.  CaV1.2 β-subunit coordinates CaMKII-triggered cardiomyocyte death and afterdepolarizations , 2010, Proceedings of the National Academy of Sciences.

[35]  G. Tomaselli,et al.  Na+ channel regulation by Ca2+/calmodulin and Ca2+/calmodulin-dependent protein kinase II in guinea-pig ventricular myocytes. , 2010, Cardiovascular research.

[36]  Mark E. Anderson,et al.  Oxidized Calmodulin Kinase II Regulates Conduction Following Myocardial Infarction: A Computational Analysis , 2009, PLoS Comput. Biol..

[37]  D. Bers,et al.  Calcium/Calmodulin-dependent Kinase II Regulation of Cardiac Ion Channels , 2009, Journal of cardiovascular pharmacology.

[38]  Jussi T. Koivumäki,et al.  Regulation of excitation-contraction coupling in mouse cardiac myocytes: integrative analysis with mathematical modelling , 2009, BMC Physiology.

[39]  Tong Zhang,et al.  Requirement for Ca2+/calmodulin-dependent kinase II in the transition from pressure overload-induced cardiac hypertrophy to heart failure in mice. , 2009, The Journal of clinical investigation.

[40]  A. Jeromin,et al.  Kv4 Potassium Channels Form a Tripartite Complex With the Anchoring Protein SAP97 and CaMKII in Cardiac Myocytes , 2009, Circulation research.

[41]  M. Anderson Sticky fingers: CaMKII finds a home on another ion channel. , 2009, Circulation research.

[42]  Joseph L Greenstein,et al.  CaMKII-induced shift in modal gating explains L-type Ca(2+) current facilitation: a modeling study. , 2009, Biophysical journal.

[43]  Hugo A. Katus,et al.  The δ isoform of CaM kinase II is required for pathological cardiac hypertrophy and remodeling after pressure overload , 2009, Proceedings of the National Academy of Sciences.

[44]  Mark E. Anderson,et al.  Proarrhythmic Defects in Timothy Syndrome Require Calmodulin Kinase II , 2008, Circulation.

[45]  Donald M Bers,et al.  Calmodulin mediates differential sensitivity of CaMKII and calcineurin to local Ca2+ in cardiac myocytes. , 2008, Biophysical journal.

[46]  Yoram Rudy,et al.  Role of activated CaMKII in abnormal calcium homeostasis and I(Na) remodeling after myocardial infarction: insights from mathematical modeling. , 2008, Journal of molecular and cellular cardiology.

[47]  D. Tester,et al.  Syntrophin mutation associated with long QT syndrome through activation of the nNOS–SCN5A macromolecular complex , 2008, Proceedings of the National Academy of Sciences.

[48]  Mark E. Anderson,et al.  A Dynamic Pathway for Calcium-Independent Activation of CaMKII by Methionine Oxidation , 2008, Cell.

[49]  Stefan Wagner,et al.  Ca2+/calmodulin-dependent protein kinase II regulates cardiac Na+ channels. , 2006, The Journal of clinical investigation.

[50]  Mark E. Anderson,et al.  RETRACTED: L-Type Ca2+ Channel Facilitation Mediated by Phosphorylation of the β Subunit by CaMKII , 2006 .

[51]  Patrick Ruchat,et al.  Cardiac Sodium Channel Nav1.5 Is Regulated by a Multiprotein Complex Composed of Syntrophins and Dystrophin , 2006, Circulation research.

[52]  Denis Noble,et al.  Modulatory effect of calmodulin-dependent kinase II (CaMKII) on sarcoplasmic reticulum Ca2+ handling and interval–force relations: a modelling study , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[53]  L. Ye,et al.  Functional role of anion channels in cardiac diseases , 2005, Acta Pharmacologica Sinica.

[54]  Carlo Napolitano,et al.  Nav1.5 E1053K mutation causing Brugada syndrome blocks binding to ankyrin-G and expression of Nav1.5 on the surface of cardiomyocytes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[55]  Yoram Rudy,et al.  Rate Dependence and Regulation of Action Potential and Calcium Transient in a Canine Cardiac Ventricular Cell Model , 2004, Circulation.

[56]  Tong Zhang,et al.  The &dgr;C Isoform of CaMKII Is Activated in Cardiac Hypertrophy and Induces Dilated Cardiomyopathy and Heart Failure , 2003, Circulation research.

[57]  Angus C Nairn,et al.  Crystal structure of a tetradecameric assembly of the association domain of Ca2+/calmodulin-dependent kinase II. , 2003, Molecular cell.

[58]  H. N. Sabbah,et al.  Repolarization abnormalities in cardiomyocytes of dogs with chronic heart failure: role of sustained inward current , 1999, Cellular and Molecular Life Sciences CMLS.

[59]  H N Sabbah,et al.  Novel, ultraslow inactivating sodium current in human ventricular cardiomyocytes. , 1998, Circulation.

[60]  H. Schulman,et al.  Alternative splicing introduces a nuclear localization signal that targets multifunctional CaM kinase to the nucleus , 1994, The Journal of cell biology.

[61]  Lubert Stryer,et al.  Dual role of calmodulin in autophosphorylation of multifunctional cam kinase may underlie decoding of calcium signals , 1994, Neuron.

[62]  C. Antzelevitch,et al.  The role of late I Na in development of cardiac arrhythmias. , 2014, Handbook of experimental pharmacology.

[63]  S. Priori,et al.  Calmodulin kinase II inhibition prevents arrhythmias in RyR2(R4496C+/-) mice with catecholaminergic polymorphic ventricular tachycardia. , 2011, Journal of molecular and cellular cardiology.