On the complexity of minimum-link path problems

We revisit the minimum-link path problem: Given a polyhedral domain and two points in it, connect the points by a polygonal path with minimum number of edges. We consider settings where the vertices and/or the edges of the path are restricted to lie on the boundary of the domain, or can be in its interior. Our results include bit complexity bounds, a novel general hardness construction, and a polynomial-time approximation scheme. We fully characterize the situation in 2 dimensions, and provide first results in dimensions 3 and higher for several variants of the problem. Concretely, our results resolve several open problems. We prove that computing the minimum-link diffuse reflection path, motivated by ray tracing in computer graphics, is NP-hard, even for two-dimensional polygonal domains with holes. This has remained an open problem [Ghosh et al.'2012] despite a large body of work on the topic. We also resolve the open problem from [Mitchell et al.'1992] mentioned in the handbook [Goodman and Rourke'2004] (see Chapter 27.5, Open problem 3) and The Open Problems Project [http://maven.smith.edu/~orourke/TOPP/] (see Problem 22): "What is the complexity of the minimum-link path problem in 3-space?" Our results imply that the problem is NP-hard even on terrains (and hence, due to discreteness of the answer, there is no FPTAS unless P=NP), but admits a PTAS.

[1]  Andrew S. Glassner,et al.  Introduction to computer graphics , 2013, SIGGRAPH '13.

[2]  John Hershberger,et al.  Computing Minimum Length Paths of a Given Homotopy Class (Extended Abstract) , 1991, WADS.

[3]  Jirí Matousek,et al.  Ray shooting and parametric search , 1992, STOC '92.

[4]  Michael Sipser,et al.  Parity, circuits, and the polynomial-time hierarchy , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[5]  Giovanni Viglietta Face-Guarding Polyhedra , 2013, CCCG.

[6]  Boris Aronov,et al.  Visibility with Multiple Reflections , 1996, SWAT.

[7]  Subir Kumar Ghosh Computing the Visibility Polygon from a Convex Set and Related Problems , 1991, J. Algorithms.

[8]  Mark de Berg Generalized Hidden Surface Removal , 1995, Comput. Geom..

[9]  Boris Aronov,et al.  Visibility with One Reflection , 1998, Discret. Comput. Geom..

[10]  Maarten Löffler,et al.  Practical Approaches to Partially Guarding a Polyhedral Terrain , 2014, GIScience.

[11]  Anil Maheshwari,et al.  Algorithms for computing diffuse reflection paths in polygons , 2011, The Visual Computer.

[12]  Michael L. Fredman,et al.  Trans-Dichotomous Algorithms for Minimum Spanning Trees and Shortest Paths , 1994, J. Comput. Syst. Sci..

[13]  Mark de Berg,et al.  Shortest path queries in rectilinear worlds , 1992, Int. J. Comput. Geom. Appl..

[14]  Joseph S. B. Mitchell,et al.  Minimum-link paths revisited , 2013, Comput. Geom..

[15]  Gert Vegter,et al.  In handbook of discrete and computational geometry , 1997 .

[16]  Leonidas J. Guibas,et al.  On incremental rendering of silhouette maps of polyhedral scene , 2000, SODA '00.

[17]  Matthew J. Katz,et al.  Approximating the Visible Region of a Point on a Terrain , 2008, GeoInformatica.

[18]  John Iacono,et al.  Packing 2×2 unit squares into grid polygons is NP-complete , 2009, CCCG.

[19]  Mark H. Overmars,et al.  On a Class of O(n2) Problems in Computational Geometry , 1995, Comput. Geom..

[20]  Jack Snoeyink,et al.  On the bit complexity of minimum link paths: superquadratic algorithms for problems solvable in linear time , 1996, SCG '96.

[21]  Richard Cole,et al.  Visibility Problems for Polyhedral Terrains , 2018, J. Symb. Comput..

[22]  Mark H. Overmars,et al.  New methods for computing visibility graphs , 1988, SCG '88.

[23]  Marcus Schaefer,et al.  Recognizing string graphs in NP , 2002, STOC '02.

[24]  Maarten Löffler,et al.  Region-Based Approximation of Probability Distributions (for Visibility Between Imprecise Points Among Obstacles) , 2014, Algorithmica.

[25]  Joseph S. B. Mitchell,et al.  New results on shortest paths in three dimensions , 2004, SCG '04.

[26]  Maarten Löffler,et al.  On the Complexity of Minimum-Link Path Problems , 2016, Symposium on Computational Geometry.

[27]  Moshe Dror,et al.  Touring a sequence of polygons , 2003, STOC '03.

[28]  Chak-Kuen Wong,et al.  On Bends and Distances of Paths Among Obstacles in Two-Layer Interconnection Model , 1994, IEEE Trans. Computers.

[29]  Leonidas J. Guibas,et al.  Linear-time algorithms for visibility and shortest path problems inside triangulated simple polygons , 1987, Algorithmica.

[30]  Joseph O'Rourke,et al.  Arrangements of lines in 3-space: a data structure with applications , 1988, SCG '88.

[31]  Joseph S. B. Mitchell,et al.  Visibility preserving terrain simplification: an experimental study , 2002, SCG '02.

[32]  Svante Carlsson,et al.  Finding the Shortest Watchman Route in a Simple Polygon , 1993, ISAAC.

[33]  C. Piatko,et al.  Geometric Bicriteria Optimal Path Problems , 1993 .

[34]  Erik D. Demaine,et al.  The Open Problems Project , 2007 .

[35]  S. Suri A linear time algorithm with minimum link paths inside a simple polygon , 1986 .

[36]  Tamal K. Dey,et al.  Visibility with multiple diffuse reflections , 1998, Comput. Geom..

[37]  John F. Canny,et al.  New lower bound techniques for robot motion planning problems , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[38]  Mark H. Overmars,et al.  Minimum-link C-oriented paths: Single-source queries , 1994, Int. J. Comput. Geom. Appl..

[39]  Micha Sharir,et al.  Arrangements and Their Applications , 2000, Handbook of Computational Geometry.

[40]  Boris Aronov,et al.  The Complexity of Diffuse Reflections in a Simple Polygon , 2006, LATIN.

[41]  D. T. Lee,et al.  Minimal Link Visibility Paths Inside a Simple Polygon , 1993, Comput. Geom..

[42]  Chak-Kuen Wong,et al.  On bends and lengths of rectilinear paths: a graph theoretic approach , 1992, Int. J. Comput. Geom. Appl..

[43]  A. James Stewart Hierarchical Visibility in Terrains , 1997, Rendering Techniques.

[44]  Chak-Kuen Wong,et al.  Rectilinear Path Problems among Rectilinear Obstacles Revisited , 1995, SIAM J. Comput..

[45]  Esther Moet Computation and complexity of visibility in geometric environments , 2008 .

[46]  Joseph S. B. Mitchell,et al.  Approximating Watchman Routes , 2013, SODA.

[47]  Joseph S. B. Mitchell,et al.  Minimum-link paths among obstacles in the plane , 1990, SCG '90.

[48]  Leila De Floriani,et al.  Algorithms for Visibility Computation on Terrains: A Survey , 2003 .

[49]  Sudebkumar Prasant Pal,et al.  An Algorithm for Computing Constrained Reflection Paths in Simple Polygon , 2013, ArXiv.

[50]  Arnold Schönhage,et al.  On the Power of Random Access Machines , 1979, ICALP.

[51]  Maarten Löffler,et al.  Terrain visibility with multiple viewpoints , 2013, ISAAC.

[52]  Leonidas J. Guibas,et al.  Approximating Polygons and Subdivisions with Minimum Link Paths , 1991, Int. J. Comput. Geom. Appl..