Polarization-sensitive microelectromechanical systems based tunable terahertz metamaterials using three dimensional electric split-ring resonator arrays

We present the design, simulation, fabrication, and characterization of structurally reconfigurable metamaterials showing terahertz frequency tunability with a polarization-sensitivity. The proposed metamaterial structures employ deformable microelectromechanical system based curved cantilevers for tuning the resonance frequency of the electric split-ring resonators. The resonance frequency is observed to be either tunable or non-tunable with the electric field of the incident wave, which is perpendicular or parallel to the split gap of the electric split-ring resonators. This polarization-sensitive characteristic has been demonstrated by both the electromagnetic simulation and the experimental measurement. The observed polarization-sensitive tunability could be used for the development of polarization sensitive and insensitive THz polarimetric devices.

[1]  Hu Tao,et al.  Reconfigurable terahertz metamaterials. , 2009, Physical review letters.

[2]  David R. Smith,et al.  Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves , 2008 .

[3]  W. T. Chen,et al.  A combinatorial approach to metamaterials discovery , 2010, 1009.0391.

[4]  Igal Brener,et al.  Micrometer‐Scale Cubic Unit Cell 3D Metamaterial Layers , 2010, Advanced materials.

[5]  A. Mitchell,et al.  Mechanically tunable terahertz metamaterials , 2013 .

[6]  Ranjan Singh,et al.  Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates. , 2011, Optics letters.

[7]  Nikolay I. Zheludev,et al.  A Roadmap for Metamaterials , 2011 .

[8]  M. Rahmani,et al.  Realization of Variable Three‐Dimensional Terahertz Metamaterial Tubes for Passive Resonance Tunability , 2012, Advanced materials.

[9]  Abul K. Azad,et al.  Experimental demonstration of frequency-agile terahertz metamaterials , 2008 .

[10]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[11]  Stewart,et al.  Extremely low frequency plasmons in metallic mesostructures. , 1996, Physical review letters.

[12]  Francisco Medina,et al.  Role of bianisotropy in negative permeability and left-handed metamaterials , 2002 .

[13]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[14]  Thomas R Huser,et al.  Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates. , 2005, Nano letters.

[15]  T. Bourouina,et al.  Microelectromechanical Maltese-cross metamaterial with tunable terahertz anisotropy , 2012, Nature Communications.

[16]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[17]  Willie J Padilla,et al.  Composite medium with simultaneously negative permeability and permittivity , 2000, Physical review letters.

[18]  Patrick Mounaix,et al.  Tunable terahertz metamaterials with negative permeability , 2009 .

[19]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[20]  N. Zheludev,et al.  From metamaterials to metadevices. , 2012, Nature materials.

[21]  Din Ping Tsai,et al.  Optical magnetic response in three-dimensional metamaterial of upright plasmonic meta-molecules. , 2011, Optics express.

[22]  Chengkuo Lee,et al.  Development of stress-induced curved actuators for a tunable THz filter based on double split-ring resonators , 2013 .

[23]  V. Shalaev Optical negative-index metamaterials , 2007 .

[24]  Kurt Busch,et al.  Liquid-Crystal Photonic-Band-Gap Materials: The Tunable Electromagnetic Vacuum , 1999 .

[25]  Nikolay I Zheludev,et al.  The Road Ahead for Metamaterials , 2010, Science.

[26]  D. Tsai,et al.  Micromachined tunable metamaterials: a review , 2012 .

[27]  Xin Zhang,et al.  Stand-up magnetic metamaterials at terahertz frequencies. , 2011, Optics express.

[28]  Ai Qun Liu,et al.  Switchable Magnetic Metamaterials Using Micromachining Processes , 2011, Advanced materials.

[29]  Xin Zhang,et al.  Frequency tunable terahertz metamaterials using broadside coupled split-ring resonators , 2011 .

[30]  E. N. Economou,et al.  Saturation of the magnetic response of split-ring resonators at optical frequencies. , 2005, Physical review letters.

[31]  C. Gu,et al.  Bianisotropic response of microfabricated metamaterials in the terahertz region , 2006 .

[32]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[33]  Maria Kafesaki,et al.  Optically switchable and tunable terahertz metamaterials through photoconductivity , 2012 .

[34]  C. H. Zhang,et al.  Low-loss terahertz metamaterial from superconducting niobium nitride films. , 2012, Optics express.

[35]  I. Vendik,et al.  Tunable terahertz metamaterials based on electrically controlled piezoelectric actuators , 2012 .

[36]  W. T. Chen,et al.  Fabrication of three dimensional split ring resonators by stress-driven assembly method. , 2012, Optics express.

[37]  David R. Smith,et al.  Metamaterials and Negative Refractive Index , 2004, Science.

[38]  Akhlesh Lakhtakia,et al.  Terahertz metamaterials with semiconductor split-ring resonators for magnetostatic tunability. , 2008, Optics express.

[39]  Igal Brener,et al.  Metamaterials for THz polarimetric devices. , 2009, Optics express.

[40]  Martin Wegener,et al.  Optical Metamaterials—More Bulky and Less Lossy , 2010, Science.

[41]  David R. Smith,et al.  Electric-field-coupled resonators for negative permittivity metamaterials , 2006 .

[42]  D. P. Tsai,et al.  Toroidal Dipolar Response in a Metamaterial , 2010, Science.

[43]  Willie J Padilla,et al.  Dynamical electric and magnetic metamaterial response at terahertz frequencies , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[44]  Roberto Merlin,et al.  Analytical solution of the almost-perfect-lens problem , 2004 .

[45]  Willie J. Padilla,et al.  MEMS Based Structurally Tunable Metamaterials at Terahertz Frequencies , 2011 .