Modifications of cell wall polymers in Gram-positive bacteria by multi-component transmembrane glycosylation systems☆

[1]  I. Brockhausen,et al.  Distinct Pathways Carry Out α and β Galactosylation of Secondary Cell Wall Polysaccharide in Bacillus anthracis , 2020, Journal of bacteriology.

[2]  J. Veening,et al.  Structure of a proton-dependent lipid transporter involved in lipoteichoic acids biosynthesis , 2020, Nature Structural & Molecular Biology.

[3]  Y. Guérardel,et al.  Complete Structure of the Enterococcal Polysaccharide Antigen (EPA) of Vancomycin-Resistant Enterococcus faecalis V583 Reveals that EPA Decorations Are Teichoic Acids Covalently Linked to a Rhamnopolysaccharide Backbone , 2020, mBio.

[4]  D. van Sinderen,et al.  Three distinct glycosylation pathways are involved in the decoration of Lactococcus lactis cell wall glycopolymers. , 2020, Journal of Biological Chemistry.

[5]  Cong-Zhao Zhou,et al.  Cryo-electron Microscopy Structure and Transport Mechanism of a Wall Teichoic Acid ABC Transporter , 2020, mBio.

[6]  M. Loessner,et al.  Galactosylated wall teichoic acid, but not lipoteichoic acid, retains InlB on the surface of serovar 4b Listeria monocytogenes , 2020, Molecular microbiology.

[7]  M. Loessner,et al.  Structure and function of Listeria teichoic acids and their implications , 2020, Molecular microbiology.

[8]  Yong Zi Tan,et al.  Cryo-EM Structures and Regulation of Arabinofuranosyltransferase AftD from Mycobacteria , 2019, bioRxiv.

[9]  Julia Kowal,et al.  Cryo–electron microscopy structures of human oligosaccharyltransferase complexes OST-A and OST-B , 2019, Science.

[10]  M. Loessner,et al.  GtcA is required for LTA glycosylation in Listeria monocytogenes serovar 1/2a and Bacillus subtilis , 2019, bioRxiv.

[11]  C. Péchoux,et al.  A dual-chain assembly pathway generates the high structural diversity of cell-wall polysaccharides in Lactococcus lactis , 2019, The Journal of Biological Chemistry.

[12]  C. Schäffer,et al.  Pyruvate Substitutions on Glycoconjugates , 2019, International journal of molecular sciences.

[13]  Maria P. Pavlou,et al.  Phage resistance at the cost of virulence: Listeria monocytogenes serovar 4b requires galactosylated teichoic acids for InlB-mediated invasion , 2019, PLoS pathogens.

[14]  D. Uhrín,et al.  Group A, B, C, and G Streptococcus Lancefield antigen biosynthesis is initiated by a conserved α-d-GlcNAc-β-1,4-l-rhamnosyltransferase , 2019, The Journal of Biological Chemistry.

[15]  C. Kovacs,et al.  Streptococcus mutans requires mature rhamnose‐glucose polysaccharides for proper pathophysiology, morphogenesis and cellular division , 2019, Molecular microbiology.

[16]  S. Walker,et al.  A partial reconstitution implicates DltD in catalyzing lipoteichoic acid d-alanylation , 2018, The Journal of Biological Chemistry.

[17]  Z. Rao,et al.  Crystal structure of a membrane-bound O-acyltransferase , 2018, Nature.

[18]  Timothy C. Meredith,et al.  Salt-Induced Stress Stimulates a Lipoteichoic Acid-Specific Three-Component Glycosylation System in Staphylococcus aureus , 2018, Journal of bacteriology.

[19]  J. Kowal,et al.  Structure of the yeast oligosaccharyltransferase complex gives insight into eukaryotic N-glycosylation , 2018, Science.

[20]  A. Gründling,et al.  Discovery of genes required for lipoteichoic acid glycosylation predicts two distinct mechanisms for wall teichoic acid glycosylation , 2018, The Journal of Biological Chemistry.

[21]  T. Abshire,et al.  Galactosylation of the Secondary Cell Wall Polysaccharide of Bacillus anthracis and Its Contribution to Anthrax Pathogenesis , 2017, Journal of bacteriology.

[22]  Lukas Zimmermann,et al.  A Completely Reimplemented MPI Bioinformatics Toolkit with a New HHpred Server at its Core. , 2017, Journal of molecular biology.

[23]  J. Reymond,et al.  Molecular basis of lipid-linked oligosaccharide recognition and processing by bacterial oligosaccharyltransferase , 2017, Nature Structural & Molecular Biology.

[24]  C. Péchoux,et al.  Another Brick in the Wall: a Rhamnan Polysaccharide Trapped inside Peptidoglycan of Lactococcus lactis , 2017, mBio.

[25]  D. Missiakas,et al.  Assembly and Function of the Bacillus anthracis S-Layer. , 2017, Annual review of microbiology.

[26]  J. Chen,et al.  The molecular mechanism of N-acetylglucosamine side-chain attachment to the Lancefield group A carbohydrate in Streptococcus pyogenes , 2017, The Journal of Biological Chemistry.

[27]  D. Missiakas,et al.  Genes Required for Bacillus anthracis Secondary Cell Wall Polysaccharide Synthesis , 2016, Journal of bacteriology.

[28]  P. Messner,et al.  Emerging facets of prokaryotic glycosylation. , 2017, FEMS microbiology reviews.

[29]  S. T. Abraham,et al.  Listeria monocytogenes wall teichoic acid decoration in virulence and cell‐to‐cell spread , 2016, Molecular microbiology.

[30]  Eleni Karinou,et al.  Identification of a Lipoteichoic Acid Glycosyltransferase Enzyme Reveals that GW-Domain-Containing Proteins Can Be Retained in the Cell Wall of Listeria monocytogenes in the Absence of Lipoteichoic Acid or Its Modifications , 2016, Journal of bacteriology.

[31]  C. Whitfield,et al.  A widespread three-component mechanism for the periplasmic modification of bacterial glycoconjugates , 2016 .

[32]  Michel-Yves Mistou,et al.  Bacterial glycobiology: rhamnose-containing cell wall polysaccharides in Gram-positive bacteria , 2016, FEMS microbiology reviews.

[33]  B. Rost,et al.  Structures of aminoarabinose transferase ArnT suggest a molecular basis for lipid A glycosylation , 2016, Science.

[34]  M. Loessner,et al.  Bacteriophage predation promotes serovar diversification in Listeria monocytogenes , 2015, Molecular microbiology.

[35]  M. Wiedmann,et al.  Selection and Characterization of Phage-Resistant Mutant Strains of Listeria monocytogenes Reveal Host Genes Linked to Phage Adsorption , 2015, Applied and Environmental Microbiology.

[36]  D. Missiakas,et al.  LytR-CpsA-Psr Enzymes as Determinants of Bacillus anthracis Secondary Cell Wall Polysaccharide Assembly , 2014, Journal of bacteriology.

[37]  A. Gründling,et al.  Lipoteichoic acid synthesis and function in gram-positive bacteria. , 2014, Annual review of microbiology.

[38]  V. Nizet,et al.  The classical lancefield antigen of group a Streptococcus is a virulence determinant with implications for vaccine design. , 2014, Cell host & microbe.

[39]  S. Matsumoto,et al.  Crystal structures of an archaeal oligosaccharyltransferase provide insights into the catalytic cycle of N-linked protein glycosylation , 2013, Proceedings of the National Academy of Sciences.

[40]  S. Walker,et al.  Wall teichoic acids of gram-positive bacteria. , 2013, Annual review of microbiology.

[41]  Nathalie T. Reichmann,et al.  Revised mechanism of d-alanine incorporation into cell wall polymers in Gram-positive bacteria , 2013, Microbiology.

[42]  Allison D. Griggs,et al.  Evolutionary Dynamics of the Accessory Genome of Listeria monocytogenes , 2013, PloS one.

[43]  M. Hecker,et al.  Contributions of Individual σB-Dependent General Stress Genes to Oxidative Stress Resistance of Bacillus subtilis , 2012, Journal of bacteriology.

[44]  M. Loessner,et al.  The cell wall binding domain of Listeria bacteriophage endolysin PlyP35 recognizes terminal GlcNAc residues in cell wall teichoic acid , 2011, Molecular microbiology.

[45]  C. Péchoux,et al.  Cell Surface of Lactococcus lactis Is Covered by a Protective Polysaccharide Pellicle* , 2010, The Journal of Biological Chemistry.

[46]  O. Schneewind,et al.  Synthesis of glycerol phosphate lipoteichoic acid in Staphylococcus aureus , 2007, Proceedings of the National Academy of Sciences.

[47]  O. Schneewind,et al.  Genes Required for Glycolipid Synthesis and Lipoteichoic Acid Anchoring in Staphylococcus aureus , 2007, Journal of bacteriology.

[48]  B. Choudhury,et al.  The Structure of the Major Cell Wall Polysaccharide of Bacillus anthracis Is Species-specific* , 2006, Journal of Biological Chemistry.

[49]  Michael Hecker,et al.  Comprehensive Characterization of the Contribution of Individual SigB-Dependent General Stress Genes to Stress Resistance of Bacillus subtilis , 2005, Journal of bacteriology.

[50]  Arcady Mushegian,et al.  Three monophyletic superfamilies account for the majority of the known glycosyltransferases , 2003, Protein science : a publication of the Protein Society.

[51]  H. Tsuda,et al.  A novel mechanism for glucose side‐chain formation in rhamnose‐glucose polysaccharide synthesis1 , 2002, FEBS letters.

[52]  M. Kiriukhin,et al.  Biosynthesis of the Glycolipid Anchor in Lipoteichoic Acid of Staphylococcus aureus RN4220: Role of YpfP, the Diglucosyldiacylglycerol Synthase , 2001, Journal of bacteriology.

[53]  F. Fiedler,et al.  A Novel Serotype-Specific Gene Cassette (gltA-gltB) Is Required for Expression of Teichoic Acid-Associated Surface Antigens in Listeria monocytogenes of Serotype 4b , 2001, Journal of bacteriology.

[54]  H. Tsuda,et al.  A Novel Gene Required for Rhamnose-Glucose Polysaccharide Synthesis in Streptococcus mutans , 1999, Journal of bacteriology.

[55]  Erik L. L. Sonnhammer,et al.  A Hidden Markov Model for Predicting Transmembrane Helices in Protein Sequences , 1998, ISMB.

[56]  J. Helmann,et al.  Identification of target promoters for the Bacillus subtilis sigma X factor using a consensus-directed search. , 1998, Journal of molecular biology.

[57]  C. Price,et al.  Isolation and characterization of csbB, a gene controlled by Bacillus subtilis general stress transcription factor σB , 1996 .