Visualisierung und Analyse multidimensionaler Datensätze

ZusammenfassungFür multidimensionale Datensätze existieren eine Reihe von automatischen Analysemethoden und Visualisierungstechniken, um ihnen innewohnende Zusammenhänge und Charakteristika aufzudecken. Die zunehmende Größe und Komplexität solcher Daten macht es notwendig, beide Ansätze miteinander zu kombinieren. In diesem Artikel stellen wir Ihnen daher etablierte Methoden zur visuellen und zur automatischen Datenanalyse vor und zeigen neuere Ansätze auf, diese sinnvoll miteinander zu kombinieren. Dabei werden alle Erläuterungen anhand anschaulicher Beispiele verdeutlicht und so für den Leser nachvollziehbar.

[1]  Martin Wattenberg A note on space-filling visualizations and space-filling curves , 2005 .

[2]  Pak Chung Wong,et al.  30 Years of Multidimensional Multivariate Visualization , 1994, Scientific Visualization.

[3]  H. J. Arnold Introduction to the Practice of Statistics , 1990 .

[4]  Ramana Rao,et al.  The table lens: merging graphical and symbolic representations in an interactive focus + context visualization for tabular information , 1994, CHI '94.

[5]  Marcus A. Magnor,et al.  Quality-Based Visualization Matrices , 2009, VMV.

[6]  Georges G. Grinstein,et al.  Iconographic Displays For Visualizing Multidimensional Data , 1988, Proceedings of the 1988 IEEE International Conference on Systems, Man, and Cybernetics.

[7]  Marcus A. Magnor,et al.  Combining automated analysis and visualization techniques for effective exploration of high-dimensional data , 2009, 2009 IEEE Symposium on Visual Analytics Science and Technology.

[8]  John W. Tukey,et al.  PRIM-9: An Interactive Multi-dimensional Data Display and Analysis System , 1975, ACM Pacific.

[9]  Heidrun Schumann,et al.  Visualisierung - Grundlagen und allgemeine Methoden , 2000 .

[10]  S. Johansson,et al.  Interactive Dimensionality Reduction Through User-defined Combinations of Quality Metrics , 2009, IEEE Transactions on Visualization and Computer Graphics.

[11]  Hans-Peter Kriegel,et al.  Recursive pattern: a technique for visualizing very large amounts of data , 1995, Proceedings Visualization '95.

[12]  Daniel Asimov,et al.  The grand tour: a tool for viewing multidimensional data , 1985 .

[13]  John P. Lewis,et al.  Eurographics/ Ieee-vgtc Symposium on Visualization 2009 Selecting Good Views of High-dimensional Data Using Class Consistency , 2022 .

[14]  Ben Shneiderman,et al.  A Rank-by-Feature Framework for Interactive Exploration of Multidimensional Data , 2005, Inf. Vis..

[15]  B. Everitt,et al.  Applied Multivariate Data Analysis. , 1993 .

[16]  Georges G. Grinstein,et al.  DNA visual and analytic data mining , 1997 .

[17]  Jonathan Goldstein,et al.  When Is ''Nearest Neighbor'' Meaningful? , 1999, ICDT.

[18]  Andrew W. Mead Review of the Development of Multidimensional Scaling Methods , 1992 .

[19]  Martin Wattenberg A note on space-filling visualizations and space-filling curves , 2005, IEEE Symposium on Information Visualization, 2005. INFOVIS 2005..

[20]  Teuvo Kohonen,et al.  Self-Organizing Maps , 2010 .

[21]  David Lindley,et al.  Introduction to the Practice of Statistics , 1990, The Mathematical Gazette.

[22]  J. Friedman Exploratory Projection Pursuit , 1987 .

[23]  Hans Hagen,et al.  Scientific Visualization: Overviews, Methodologies, and Techniques , 1997 .

[24]  M. E. McGill,et al.  Dynamic Graphics for Statistics , 1988 .

[25]  Daniel Weiskopf,et al.  Continuous Scatterplots , 2008, IEEE Transactions on Visualization and Computer Graphics.

[26]  Peter L. Brooks,et al.  Visualizing data , 1997 .

[27]  Daniel Weiskopf,et al.  Continuous Parallel Coordinates , 2009, IEEE Transactions on Visualization and Computer Graphics.

[28]  James J. Thomas,et al.  Defining Insight for Visual Analytics , 2009, IEEE Computer Graphics and Applications.