Towards a more biologically realistic use of Droop's equations to model growth under multiple nutrient limitation

Droop's model was originally designed to describe the growth of unicellular phytoplankton species in chemostats but it is now commonly used for a variety of organisms in models of trophic interacti ...

[1]  Yang Kuang,et al.  Stoichiometric plant-herbivore models and their interpretation. , 2004, Mathematical biosciences and engineering : MBE.

[2]  D. Turpin,et al.  STEADY‐STATE LUXURY CONSUMPTION AND THE CONCEPT OF OPTIMUM NUTRIENT RATIOS: A STUDY WITH PHOSPHATE AND NITRATE LIMITED SELENASTRUM MINUTUM (CHLOROPHYTA) 1 , 1985 .

[3]  K. T. Kiss,et al.  Growth of Cyclotella meneghiniana Kutz. I. Effects of temperature, light and low rate of nutrient supply , 1997 .

[4]  M. Droop SOME THOUGHTS ON NUTRIENT LIMITATION IN ALGAE 1 , 1973 .

[5]  David Tilman,et al.  Resources: A Graphical-Mechanistic Approach to Competition and Predation , 1980, The American Naturalist.

[6]  Franz J Weissing,et al.  University of Groningen Nonequilibrium coexistence in a competition model with nutrient storage , 2008 .

[7]  Dag L. Aksnes,et al.  A theoretical model for nutrient uptake in phytoplankton , 1991 .

[8]  S. A. Levin,et al.  Phytoplankton stoichiometry , 2008, Ecological Research.

[9]  S. Levin,et al.  Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton , 2004, Nature.

[10]  M. R. Droop,et al.  The nutrient status of algal cells in continuous culture , 1974, Journal of the Marine Biological Association of the United Kingdom.

[11]  S. Pirt,et al.  The Effects of Cooperativity and Growth Yield Variation on the Kinetics of Nitrogen or Phosphate Limited Growth of Chlorella in a Chemostat Culture , 1978 .

[12]  David Tilman,et al.  PHOSPHATE AND SILICATE GROWTH AND UPTAKE KINETICS OF THE DIATOMS ASTERIONELLA FORMOSA AND CYCLOTELLA MENEGHINIANA IN BATCH AND SEMICONTINUOUS CULTURE 1 , 1976 .

[13]  M. Pedersen,et al.  Nutrient control of algal growth in estuarine waters: Nutrient limitation and the importance of nitrogen requirements and nitrogen storage among phytoplankton and species of macroalgae. , 1996 .

[14]  M. Droop The nutrient status of algal cells in batch culture , 1975, Journal of the Marine Biological Association of the United Kingdom.

[15]  Stoichiometry and growth kinetics in the "smallest zooplankton" - phagotrophic flagellates , 2006 .

[16]  David Tilman,et al.  Phytoplankton Community Ecology: The Role of Limiting Nutrients , 1982 .

[17]  J. Elser,et al.  Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere , 2002 .

[18]  G. Bratbak,et al.  The elemental composition of bacteria: A signature of growth conditions? , 1996 .

[19]  M. Borchardt EFFECTS OF FLOWING WATER ON NITROGEN‐ AND PHOSPHORUS‐LIMITED PHOTOSYNTHESIS AND OPTIMUM N:P RATIOS BY SPIROGYRA FLUVIATILIS (CHAROPHYCEAE) 1, 2 , 1994 .

[20]  M. Droop In defence of the Cell Quota model of micro-algal growth , 2003 .

[21]  C. Zonneveld,et al.  Modelling the kinetics of non-limiting nutrients in microalgae , 1996 .

[22]  D. M. Nelson,et al.  Simulation of upper-ocean biogeochemistry with a flexible-composition phytoplankton model: C, N and Si cycling in the western Sargasso Sea , 2003 .

[23]  T. Andersen Pelagic Nutrient Cycles: Herbivores as Sources and Sinks , 2011 .

[24]  F. Morel,et al.  KINETICS OF NUTRIENT UPTAKE AND GROWTH IN PHYTOPLANKTON 1 , 1987 .

[25]  Andreas Oschlies,et al.  Optimal uptake kinetics: physiological acclimation explains the pattern of nitrate uptake by phytoplankton in the ocean , 2009 .

[26]  G. Rhee A CONTINUOUS CULTURE STUDY OF PHOSPHATE UPTAKE, GROWTH RATE AND POLYPHOSPHATE IN SCENEDESMUS SP. 1 , 1973 .

[27]  K. Flynn The importance of the form of the quota curve and control of non-limiting nutrient transport in phytoplankton models , 2008 .

[28]  D. Turpin GROWTH RATE DEPENDENT OPTIMUM RATIOS IN SELENASTRUM MINUTUM (CHLOROPHYTA): IMPLICATIONS FOR COMPETITION, COEXISTENCE AND STABILITY IN PHYTOPLANKTON COMMUNITIES 1 2 , 1986 .

[29]  C. Davis,et al.  Continuous culture of marine diatoms under silicon limitation. 3. A model of Si-limited diatom growth 1 , 1978 .

[30]  L. Vörös,et al.  Growth of Cyclotella meneghiniana Kutz. II. Growth and cell composition under different growth rates with different limiting nutrient , 1997 .

[31]  L Mailleret,et al.  A Mechanistic Investigation of the Algae Growth “Droop” Model , 2008, Acta biotheoretica.

[32]  S. Levin,et al.  A model of flexible uptake of two essential resources. , 2007, Journal of theoretical biology.

[33]  K. Flynn Use, abuse, misconceptions and insights from quota models — the Droop cell quota model 40 years on , 2008 .

[34]  T. Egli On multiple-nutrient-limited growth of microorganisms, with special reference to dual limitation by carbon and nitrogen substrates , 1991, Antonie van Leeuwenhoek.

[35]  P. Hosseini,et al.  Nutrient Recycling Affects Autotroph and Ecosystem Stoichiometry , 2008, The American Naturalist.

[36]  J. C. Goldman,et al.  Steady-State Growth and Chemical Composition of the Marine Chlorophyte Dunaliella tertiolecta in Nitrogen-Limited Continuous Cultures , 1979, Applied and environmental microbiology.

[37]  E. Laws,et al.  GROWTH RATE VARIATION IN THE N:P REQUIREMENT RATIO OF PHYTOPLANKTON 1 , 1985 .

[38]  S. Kooijman,et al.  The Synthesizing Unit as model for the stoichiometric fusion and branching of metabolic fluxes. , 1998, Biophysical chemistry.

[39]  Sebastiaan A.L.M. Kooijman,et al.  Existence and Stability of Microbial Prey-Predator Systems , 1994 .

[40]  G. Rhee,et al.  OPTIMUM N:P RATIOS AND COEXISTENCE OF PLANKTONIC ALGAE 1 , 1980 .

[41]  J. C. Goldman,et al.  Steady state growth and ammonium uptake of a fast‐growing marine diatom 1 , 1978 .

[42]  C. R. Taylor,et al.  The concept of symmorphosis: a testable hypothesis of structure-function relationship. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[43]  J. Elser,et al.  FUNDAMENTAL CONNECTIONS AMONG ORGANISM C:N:P STOICHIOMETRY, MACROMOLECULAR COMPOSITION, AND GROWTH , 2004 .

[44]  G. Ahlgren Growth of Oscillatoria agardhii in chemostat culture 3. Simultaneous limitation of nitrogen and phosphorus , 1985 .

[45]  J. C. Goldman,et al.  Growth rate influence on the chemical composition of phytoplankton in oceanic waters , 1979, Nature.

[46]  C. Neuhauser,et al.  Toward a mechanistic understanding of how natural bacterial communities respond to changes in temperature in aquatic ecosystems , 2008, The ISME Journal.

[47]  J. Grover Dynamics of competition among microalgae in variable environments: experimental tests of alternative models , 1991 .

[48]  Myung-Soo Han,et al.  Growth of dinoflagellates, Ceratium furca and Ceratium fusus in Sagami Bay, Japan: The role of nutrients , 2008 .

[49]  T. Thingstad Utilization of N, P, and organic C by heterotrophic bacteria. I. Outline of a chemostat theory with a consistent concept of 'maintenance' metabolism , 1987 .

[50]  G. I. Åoren Ideal nutrient productivities and nutrient proportions in plant growth , 1988 .

[51]  G. Ågren The C:N:P stoichiometry of autotrophs: Theory and observations , 2004 .

[52]  D. Burmaster The Continuous Culture of Phytoplankton: Mathematical Equivalence Among Three Steady-State Models , 1979, The American Naturalist.

[53]  G. Rhee Effects of N:P atomic ratios and nitrate limitation on algal growth, cell composition, and nitrate uptake 1 , 1978 .

[54]  T. Legovic,et al.  A model of phytoplankton growth on multiple nutrients based on the Michaelis-Menten-Monod uptake, Droop's growth and Liebig's law , 1997 .

[55]  H. Westerhoff,et al.  INTERACTION OF NITROGEN FIXATION AND PHOSPHORUS LIMITATION IN APHANIZOMENON FLOS‐AQUAE (CYANOPHYCEAE) 1 , 1997 .