Nonparametric and semiparametric regression model selection

It is known that semiparametric time series regression is often used without checking its suitability and compactness. In theory, this may result in dealing with an unnecessarily complicated model. In practice, one may encounter the computational difficulty caused by the spareness of the data. This is partly because the curse of dimensionality problem may still arise from using a semiparametric time series regression model. This paper suggests that in order to provide more precise predictions we need to choose the most significant regressors for both the parametric and nonparametric time series components. We develop a novel cross-validation based model selection procedure for the choice of both the parametric and nonparametric time series components in semiparametric time series regression, and then establish some asymptotic properties of the proposed model selection procedure. In addition, we demonstrate how to implement the model selection procedure in practice through using both simulated and real examples. Our empirical studies show that the proposed cross-validation selection procedure works well numerically.

[1]  Howell Tong,et al.  Nonparametric function estimation in noisy chaos , 1993 .

[2]  D. Tjøstheim,et al.  Nonparametric Specification Procedures for Time Series , 1997 .

[3]  H. Tong,et al.  Semiparametric non‐linear time series model selection , 2004 .

[4]  P. Robinson ROOT-N-CONSISTENT SEMIPARAMETRIC REGRESSION , 1988 .

[5]  Dag Tjøstheim,et al.  Nonparametric Identification of Nonlinear Time Series: Selecting Significant Lags , 1994 .

[6]  Wolfgang Härdle,et al.  Partially Linear Models , 2000 .

[7]  Jianqing Fan,et al.  Local polynomial modelling and its applications , 1994 .

[8]  M. Stone An Asymptotic Equivalence of Choice of Model by Cross‐Validation and Akaike's Criterion , 1977 .

[9]  Qiwei Yao,et al.  On subset selection in non-parametric stochastic regression , 1994 .

[10]  Jun S. Liu,et al.  Additivity tests for nonlinear autoregression , 1995 .

[11]  D. Tjøstheim Non-linear Time Series: A Selective Review* , 1994 .

[12]  Jianqing Fan Nonlinear Time Series , 2003 .

[13]  Ruey S. Tsay,et al.  Nonlinear Additive ARX Models , 1993 .

[14]  D. Tjøstheim,et al.  Nonparametric Estimation and Identification of Nonlinear ARCH Time Series Strong Convergence and Asymptotic Normality: Strong Convergence and Asymptotic Normality , 1995, Econometric Theory.

[15]  Timo Teräsvirta,et al.  Aspects of modelling nonlinear time series , 1986 .

[16]  W. Härdle,et al.  How Far are Automatically Chosen Regression Smoothing Parameters from their Optimum , 1988 .

[17]  Xiaodong Zheng,et al.  A CONSISTENT VARIABLE SELECTION CRITERION FOR LINEAR MODELS WITH HIGH-DIMENSIONAL COVARIATES , 1997 .

[18]  Adaptive estimation in partially linear autoregressive models , 2000 .

[19]  J. Shao AN ASYMPTOTIC THEORY FOR LINEAR MODEL SELECTION , 1997 .

[20]  Howell Tong,et al.  Fitting a smooth moving average to noisy data (Corresp.) , 1976, IEEE Trans. Inf. Theory.

[21]  Peter J. Bickel,et al.  Variable selection in nonparametric regression with categorical covariates , 1992 .

[22]  Vo V. Anh,et al.  Semiparametric Approximation Methods in Multivariate Model Selection , 2001, J. Complex..

[23]  H. Tong,et al.  On consistent nonparametric order determination and chaos , 1992 .

[24]  Dag Tjøstheim,et al.  Nonparametric Identification of Nonlinear Time Series: Projections , 1994 .

[25]  Ping Zhang Model Selection Via Multifold Cross Validation , 1993 .

[26]  P. Robinson NONPARAMETRIC ESTIMATORS FOR TIME SERIES , 1983 .

[27]  Jianqing Fan Design-adaptive Nonparametric Regression , 1992 .

[28]  Hua Liang,et al.  Asymptotic normality of pseudo-LS estimator for partly linear autoregression models , 1995 .

[29]  W. Härdle,et al.  A Review of Nonparametric Time Series Analysis , 1997 .

[30]  Philippe Vieu,et al.  Choice of regressors in nonparametric estimation , 1994 .

[31]  Carlo Novara,et al.  Nonlinear Time Series , 2003 .

[32]  Jiti Gao,et al.  Model Specification Tests in Nonparametric Stochastic Regression Models , 2002 .

[33]  Jiti Gao,et al.  Adaptive orthogonal series estimation in additive stochastic regression models , 2002 .

[34]  Vo Anh,et al.  A central limit theorem for a random quadratic form of strictly stationary processes , 2000 .

[35]  W. Härdle,et al.  Kernel regression smoothing of time series , 1992 .

[36]  J. Shao Linear Model Selection by Cross-validation , 1993 .

[37]  Dag Tjøstheim,et al.  Additive Nonlinear ARX Time Series and Projection Estimates , 1997, Econometric Theory.

[38]  H. Tong,et al.  Article: 2 , 2002, European Financial Services Law.

[39]  Ping Zhang Variable Selection in Nonparametric Regression with Continuous Covariates , 1991 .

[40]  Graciela Boente,et al.  Consistency of a nonparametric estimate of a density function for dependent variables , 1988 .