Nonparametric and semiparametric regression model selection
暂无分享,去创建一个
Jiti Gao | Howell Tong | H. Tong | Jiti Gao
[1] Howell Tong,et al. Nonparametric function estimation in noisy chaos , 1993 .
[2] D. Tjøstheim,et al. Nonparametric Specification Procedures for Time Series , 1997 .
[3] H. Tong,et al. Semiparametric non‐linear time series model selection , 2004 .
[4] P. Robinson. ROOT-N-CONSISTENT SEMIPARAMETRIC REGRESSION , 1988 .
[5] Dag Tjøstheim,et al. Nonparametric Identification of Nonlinear Time Series: Selecting Significant Lags , 1994 .
[6] Wolfgang Härdle,et al. Partially Linear Models , 2000 .
[7] Jianqing Fan,et al. Local polynomial modelling and its applications , 1994 .
[8] M. Stone. An Asymptotic Equivalence of Choice of Model by Cross‐Validation and Akaike's Criterion , 1977 .
[9] Qiwei Yao,et al. On subset selection in non-parametric stochastic regression , 1994 .
[10] Jun S. Liu,et al. Additivity tests for nonlinear autoregression , 1995 .
[11] D. Tjøstheim. Non-linear Time Series: A Selective Review* , 1994 .
[12] Jianqing Fan. Nonlinear Time Series , 2003 .
[13] Ruey S. Tsay,et al. Nonlinear Additive ARX Models , 1993 .
[14] D. Tjøstheim,et al. Nonparametric Estimation and Identification of Nonlinear ARCH Time Series Strong Convergence and Asymptotic Normality: Strong Convergence and Asymptotic Normality , 1995, Econometric Theory.
[15] Timo Teräsvirta,et al. Aspects of modelling nonlinear time series , 1986 .
[16] W. Härdle,et al. How Far are Automatically Chosen Regression Smoothing Parameters from their Optimum , 1988 .
[17] Xiaodong Zheng,et al. A CONSISTENT VARIABLE SELECTION CRITERION FOR LINEAR MODELS WITH HIGH-DIMENSIONAL COVARIATES , 1997 .
[18] Adaptive estimation in partially linear autoregressive models , 2000 .
[19] J. Shao. AN ASYMPTOTIC THEORY FOR LINEAR MODEL SELECTION , 1997 .
[20] Howell Tong,et al. Fitting a smooth moving average to noisy data (Corresp.) , 1976, IEEE Trans. Inf. Theory.
[21] Peter J. Bickel,et al. Variable selection in nonparametric regression with categorical covariates , 1992 .
[22] Vo V. Anh,et al. Semiparametric Approximation Methods in Multivariate Model Selection , 2001, J. Complex..
[23] H. Tong,et al. On consistent nonparametric order determination and chaos , 1992 .
[24] Dag Tjøstheim,et al. Nonparametric Identification of Nonlinear Time Series: Projections , 1994 .
[25] Ping Zhang. Model Selection Via Multifold Cross Validation , 1993 .
[26] P. Robinson. NONPARAMETRIC ESTIMATORS FOR TIME SERIES , 1983 .
[27] Jianqing Fan. Design-adaptive Nonparametric Regression , 1992 .
[28] Hua Liang,et al. Asymptotic normality of pseudo-LS estimator for partly linear autoregression models , 1995 .
[29] W. Härdle,et al. A Review of Nonparametric Time Series Analysis , 1997 .
[30] Philippe Vieu,et al. Choice of regressors in nonparametric estimation , 1994 .
[31] Carlo Novara,et al. Nonlinear Time Series , 2003 .
[32] Jiti Gao,et al. Model Specification Tests in Nonparametric Stochastic Regression Models , 2002 .
[33] Jiti Gao,et al. Adaptive orthogonal series estimation in additive stochastic regression models , 2002 .
[34] Vo Anh,et al. A central limit theorem for a random quadratic form of strictly stationary processes , 2000 .
[35] W. Härdle,et al. Kernel regression smoothing of time series , 1992 .
[36] J. Shao. Linear Model Selection by Cross-validation , 1993 .
[37] Dag Tjøstheim,et al. Additive Nonlinear ARX Time Series and Projection Estimates , 1997, Econometric Theory.
[38] H. Tong,et al. Article: 2 , 2002, European Financial Services Law.
[39] Ping Zhang. Variable Selection in Nonparametric Regression with Continuous Covariates , 1991 .
[40] Graciela Boente,et al. Consistency of a nonparametric estimate of a density function for dependent variables , 1988 .