Existence and Multiplicity Results for Kirchhoff Problems

We consider the following superlinear Kirchhoff problem: $$\begin{aligned} \left\{ \begin{array}{ll} -\left( a+b\int _{\Omega }|\nabla u|^{2}\right) \triangle u=f(x,u)&{}\quad \hbox {in}\ \ \Omega ,\ \\ u=0&{}\quad \hbox {on}\ \partial \Omega , \end{array} \right. \end{aligned}$$-a+b∫Ω|∇u|2▵u=f(x,u)inΩ,u=0on∂Ω,where $$\Omega $$Ω is a smooth bounded domain in $${\mathbb {R}}^{3}$$R3, and $$a,b>0$$a,b>0. Inspired by an anti-example, we find a new superlinear growth condition which unifies the known Ambrosetti–Rabinowitz type conditions and get the existence and multiplicity of nontrivial solutions. We also prove the existence of positive solution, negative solution and sign-changing solution to the problem without any symmetry. Our argument depends on the newly established condition and the method of critical point theory in the setting of invariant sets of the descending flows. We improve and extend some recent results in the literature.

[1]  C. O. Alves,et al.  Schrödinger–Poisson equations without Ambrosetti–Rabinowitz condition☆ , 2011 .

[2]  E. N. Dancer,et al.  Fucik Spectrum, Sign-Changing, and Multiple Solutions for Semilinear Elliptic Boundary Value Problems with Resonance at Infinity , 2000 .

[3]  Juan Sun,et al.  Nontrivial solutions of Kirchhoff type problems , 2012, Appl. Math. Lett..

[4]  Anmin Mao,et al.  Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition , 2009 .

[5]  Zhengping Wang,et al.  Sign-changing solutions for the nonlinear Schrödinger–Poisson system in $$\mathbb {R}^3$$R3 , 2015 .

[6]  Chun-Lei Tang,et al.  Existence and multiplicity of solutions for Kirchhoff type equations , 2011 .

[7]  Yang Yang,et al.  Nontrivial solutions of a class of nonlocal problems via local linking theory , 2010, Appl. Math. Lett..

[8]  To Fu Ma,et al.  Positive solutions for a quasilinear elliptic equation of Kirchhoff type , 2005 .

[9]  Xiaoming He,et al.  Multiplicity of solutions for a class of Kirchhoff type problems , 2010 .

[10]  Bitao Cheng,et al.  Existence results of positive solutions of Kirchhoff type problems , 2009 .

[11]  J. Nieto,et al.  Positive solution for a superlinear Kirchhoff type problem with a parameter , 2014 .

[12]  Chun-Lei Tang,et al.  High energy solutions for the superlinear Schrödinger–Maxwell equations☆ , 2009 .

[13]  Seunghye Kim,et al.  ON NODAL SOLUTIONS OF THE NONLINEAR SCHRÖDINGER–POISSON EQUATIONS , 2012 .

[14]  Jacques-Louis Lions,et al.  On Some Questions in Boundary Value Problems of Mathematical Physics , 1978 .

[15]  I. Ianni Sign-changing radial solutions for the Schr\"odinger-Poisson-Slater problem , 2011, 1108.2803.

[16]  P. Rabinowitz,et al.  Dual variational methods in critical point theory and applications , 1973 .

[17]  Juntao Sun,et al.  Existence and multiplicity of solutions for an indefinite Kirchhoff-type equation in bounded domains , 2016, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[18]  Thomas Bartsch,et al.  Infinitely many solutions of a symmetric Dirichlet problem , 1993 .

[19]  Xian Wu,et al.  Infinitely many radial solutions for Kirchhoff-type problems in RN , 2010 .

[20]  Kanishka Perera,et al.  Nontrivial solutions of Kirchhoff-type problems via the Yang index , 2006 .

[21]  Yueh-Cheng Kuo,et al.  The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions , 2011 .

[22]  Mingqi Xiang,et al.  Infinitely many solutions for a fractional Kirchhoff type problem via Fountain Theorem , 2015 .

[23]  Jingxian Sun,et al.  Invariant Sets of Descending Flow in Critical Point Theory with Applications to Nonlinear Differential Equations , 2001 .

[24]  Kanishka Perera,et al.  Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow , 2006 .