Detailed simulation study of a dual material gate carbon nanotube field-effect transistor
暂无分享,去创建一个
[1] M. J. Kumar,et al. Controlling short-channel effects in deep-submicron SOI MOSFETs for improved reliability: a review , 2004, IEEE Transactions on Device and Materials Reliability.
[2] M. Jagadesh Kumar,et al. Diminished Short Channel Effects in Nanoscale Double-Gate Silicon-on-Insulator Metal-Oxide-Semiconductor Field-Effect-Transistors due to Induced Back-Gate Step Potential , 2005 .
[3] T. Brandes. Low-Dimensional Systems , 2000 .
[4] M.J. Kumar,et al. A new dual-material double-gate (DMDG) nanoscale SOI MOSFET-two-dimensional analytical modeling and simulation , 2005, IEEE Transactions on Nanotechnology.
[5] Mark S. Lundstrom,et al. A numerical study of scaling issues for Schottky-barrier carbon nanotube transistors , 2003, IEEE Transactions on Electron Devices.
[6] P. McEuen,et al. Electron-Phonon Scattering in Metallic Single-Walled Carbon Nanotubes , 2003, cond-mat/0309641.
[7] Gerhard Klimeck,et al. Single and multiband modeling of quantum electron transport through layered semiconductor devices , 1997 .
[8] Theodore I. Kamins,et al. Device Electronics for Integrated Circuits , 1977 .
[9] S. Datta. Quantum Transport: Atom to Transistor , 2004 .
[10] S. Tans,et al. Room-temperature transistor based on a single carbon nanotube , 1998, Nature.
[11] Ken K. Chin,et al. Dual-material gate (DMG) field effect transistor , 1999 .
[12] M.J. Kumar,et al. Two-dimensional analytical modeling of fully depleted DMG SOI MOSFET and evidence for diminished SCEs , 2004, IEEE Transactions on Electron Devices.
[13] S. Wind,et al. Carbon nanotube electronics , 2002, Digest. International Electron Devices Meeting,.
[14] S. Datta. Electronic transport in mesoscopic systems , 1995 .
[15] F. Hsu,et al. Structure-enhanced MOSFET degradation due to hot-electron injection , 1984, IEEE Electron Device Letters.
[16] S. Datta. Nanoscale device modeling: the Green’s function method , 2000 .
[17] Reference levels for heterojunctions and Schottky barriers. , 1986, Physical review letters.
[18] Ali A. Orouji,et al. Investigation of the novel attributes of a carbon nanotube FET with high-κ gate dielectrics , 2008 .
[19] François Léonard,et al. Multiple functionality in nanotube transistors. , 2002, Physical review letters.
[20] Herbert Shea,et al. Single- and multi-wall carbon nanotube field-effect transistors , 1998 .
[21] Mark S. Lundstrom,et al. Toward Multiscale Modeling of Carbon Nanotube Transistors , 2004 .
[22] S. Datta,et al. Simulating quantum transport in nanoscale transistors: Real versus mode-space approaches , 2002 .
[23] S. Wind,et al. Lateral scaling in carbon-nanotube field-effect transistors. , 2003, Physical review letters.
[24] S. M. Sze,et al. Physics of semiconductor devices , 1969 .
[25] J. Tersoff. Schottky Barrier Heights and the Continuum of Gap States , 1984 .
[26] J. Hafner,et al. Fabry - Perot interference in a nanotube electron waveguide , 2001, Nature.
[27] Tongsheng Xia,et al. Quantum transport in carbon nanotube transistors: Complex band structure effects , 2004 .
[28] M.J. Kumar,et al. New dual-material SG nanoscale MOSFET: analytical threshold-voltage model , 2006, IEEE Transactions on Electron Devices.
[29] M.J. Kumar,et al. Investigation of the novel attributes of a fully depleted dual-material gate SOI MOSFET , 2004, IEEE Transactions on Electron Devices.
[30] S. Datta,et al. Performance projections for ballistic carbon nanotube field-effect transistors , 2002 .
[31] M. Anantram,et al. Two-dimensional quantum mechanical modeling of nanotransistors , 2001, cond-mat/0111290.