The Controlled Center Dynamics

The center manifold theorem is a model reduction technique for determining the local asymptotic stability of an equilibrium of a dynamical system when its linear part is not hyperbolic. The overall system is asymptotically stable if and only if the center manifold dynamics is asymptotically stable. This allows for a substantial reduction in the dimension of the system whose asymptotic stability must be checked. Moreover, the center manifold and its dynamics need not be computed exactly; frequently, a low degree approximation is sufficient to determine its stability. The controlled center dynamics plays a similar role in determining local stabilizability of an equilibrium of a control system when its linear part is not stabilizable. It is a reduced order control system with a pseudoinput to be chosen in order to stabilize it. If this is successful, then the overall control system is locally stabilizable to the equilibrium. Again, usually low degree approximation suffices.

[1]  C. SIAMJ.,et al.  BIFURCATION AND NORMAL FORM OF NONLINEAR CONTROL SYSTEMS , PART II , 1998 .

[2]  Wang Kai-Ge,et al.  APPLICATION OF CENTRE MANIFOLD THEORY IN GENERALIZED MAXWELL-BLOCH LASER EQUATIONS , 1996 .

[3]  Arthur J. Krener,et al.  Extended quadratic controller normal form and dynamic state feedback linearization of nonlinear systems , 1992 .

[4]  S. Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos , 1989 .

[5]  Arthur J. Krener,et al.  Control bifurcations , 2004, IEEE Transactions on Automatic Control.

[6]  E. G. Al'Brekht,et al.  Optimal stabilization in the critical case of a single zero root , 1997 .

[7]  Osa E Fitch The control of bifurcations with engineering applications , 1997 .

[8]  Wei Kang,et al.  Resonant terms and bifurcations of nonlinear control systems with one uncontrollable mode , 2003, Syst. Control. Lett..

[9]  Wolfgang Kliemann,et al.  Controllability and stabilization of one-dimensional systems near bifurcation points , 1995 .

[10]  A. Kelley The stable, center-stable, center, center-unstable, unstable manifolds , 1967 .

[11]  O. B. Lykova,et al.  On the reduction principle in the theory of stability of motion , 1993 .

[12]  Arthur J. Krener,et al.  Practical Stabilization of Systems with a Fold Control Bifurcation , 2003 .

[13]  Daniel B. Henry Geometric Theory of Semilinear Parabolic Equations , 1989 .

[14]  D. Aeyels Stabilization of a class of nonlinear systems by a smooth feedback control , 1985 .

[15]  M. Poincaré,et al.  Sur les propriétés des fonctions définies par les équations aux différences partielles , 1879 .

[16]  S. Sastry,et al.  Stabilization of nonlinear systems with uncontrollable linearization , 1988 .

[17]  J. M. Ball,et al.  GEOMETRIC THEORY OF SEMILINEAR PARABOLIC EQUATIONS (Lecture Notes in Mathematics, 840) , 1982 .

[18]  Boumediene Hamzi,et al.  Analyse et commande des systemes non lineaires non commandables en premiere approximation dans le cadre de la theorie des bifurcations , 2001 .

[19]  Arthur J. Krener,et al.  Control of center manifolds , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[20]  Wei Kang,et al.  Bifurcation Control via State Feedback for Systems with a Single Uncontrollable Mode , 2000, SIAM J. Control. Optim..

[21]  Thomas Kailath,et al.  Linear Systems , 1980 .

[22]  Jean-Pierre Barbot,et al.  Nonlinear discrete-time control of systems with a Naimark-Sacker bifurcation , 2001, Syst. Control. Lett..

[23]  E. Abed,et al.  Local feedback stabilization and bifurcation control, I. Hopf bifurcation , 1986 .

[24]  Jean-Pierre Barbot,et al.  Analysis and Control of Hopf Bifurcations , 2003, SIAM J. Control. Optim..

[25]  Wei Kang,et al.  Bifurcation and Normal Form of Nonlinear Control Systems, Part II , 1998 .