Optical second harmonic generation from silicon with embedded silver nanostructures

We developed an ion beam based processing scheme to synthesize Ag nanoparticles embedded within Si. Such embedded Ag nanostructures are expected to significantly enhance second harmonic generation thus the Pockel's effect in Si owing to the electric dipoles possessed by Ag nanostructures and the strong electric field effects associated with surface plasmon excitation of Ag nanostructures. Preliminary work in this direction has revealed an interesting correlation between the enhancement of second harmonic generation and the Ag nanostructure size/shape. Such nanosystems are capable of enhancing second harmonic generation from Si for on-chip silicon modulator fabrication.

[1]  Qidai Chen,et al.  Enhancement of second-harmonic generation from silicon stripes under external cylindrical strain. , 2009, Optics letters.

[2]  David R. Smith,et al.  Terahertz plasmonic high pass filter , 2003 .

[3]  C. C. Wang,et al.  Nonlinear optics. , 1966, Applied optics.

[4]  S. U. Campisano,et al.  Gettering of metals by voids in silicon , 1995 .

[5]  Helmut Mehrer,et al.  Solubility, diffusion and thermodynamic properties of silver in silicon , 1987 .

[6]  T. Lu,et al.  Study of silver diffusion into Si(111) and SiO2 at moderate temperatures , 1991 .

[7]  J. Ziegler,et al.  SRIM – The stopping and range of ions in matter (2010) , 2010 .

[8]  Michael Seibt,et al.  Mechanisms of transition-metal gettering in silicon , 2000 .

[9]  T. Alford,et al.  Silver diffusion and defect formation in Si (1 1 1) substrate at elevated temperatures , 2002 .

[10]  R. Zuhr,et al.  Nanocrystals in crystalline silicon: Void formation and hollow particles , 2001 .

[11]  Andrew G. Glen,et al.  APPL , 2001 .

[12]  J. Wong-Leung,et al.  Microstructural difference between platinum and silver trapped in hydrogen induced cavities in silicon , 1998 .

[13]  Jacobson,et al.  Equilibrium shape of Si. , 1993, Physical review letters.

[14]  J. Wong-Leung,et al.  Diffusion and trapping of Au to cavities induced by H-implantation in Si , 1995 .

[15]  D. Villeneuve,et al.  Second harmonic generation spectroscopy of chemically modified Si(1 1 1) surfaces , 2001 .

[16]  T. E. Haynes,et al.  DEPTH PROFILING OF VACANCY CLUSTERS IN MEV-IMPLANTED SI USING AU LABELING , 1998 .

[17]  J. Zuo,et al.  The development of epitaxy of nanoclusters on lattice-mismatched substrates: Ag on H–Si(111) surfaces , 2002 .

[18]  H. Rinnert,et al.  Enhanced hydrogen stability in a-Si:H thin films evaporated under a flow of energetic argon ions , 2002 .

[19]  Harry A. Atwater,et al.  Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides , 2003, Nature materials.

[20]  G. Cerofolini,et al.  Helium-implanted silicon: A study of bubble precursors , 1999 .

[21]  P. Berini,et al.  Fabrication of long-range surface plasmon-polariton waveguides in lithium niobate on silicon , 2007 .

[22]  M. Hiller,et al.  Properties of hydrogen induced voids in silicon , 2005 .

[23]  B. Terreault Hydrogen blistering of silicon: Progress in fundamental understanding , 2007 .

[24]  N. Kadakia,et al.  Tailoring the optical constants in single-crystal silicon with embedded silver nanostructures for advanced silicon photonics applications , 2015 .

[25]  P. Chu,et al.  Nickel precipitation at nanocavities in separation by implantation of oxygen , 2000 .

[26]  Emanuele Rimini,et al.  Ion implantation : basics to device fabrication , 1995 .

[27]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[28]  Yuen-Ron Shen,et al.  Surface-enhanced Second-harmonic Generation , 1981 .

[29]  S. Naczas,et al.  Effects of surface oxide layer on nanocavity formation and silver gettering in hydrogen ion implanted silicon , 2013 .

[30]  F. Lederer,et al.  Second order nonlinear frequency conversion processes in plasmonic slot waveguides , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[31]  Wei Hu,et al.  Nonlinear plasmonic frequency conversion through quasiphase matching , 2010 .

[32]  P. Fichtner,et al.  Overpressurized bubbles versus voids formed in helium implanted and annealed silicon , 1997 .

[33]  M. Renier,et al.  Microstructure of epitaxial Ag/Si(111) and Ag/Si(100) interfaces , 1988 .

[34]  E. Rimini,et al.  Voids in Silicon by He Implantation: From Basic to Applications , 2000 .

[35]  Michael S. Martin,et al.  Physical assembly of Ag nanocrystals on enclosed surfaces in monocrystalline Si , 2014, Scientific Reports.

[36]  M. Kirk,et al.  Selective nucleation induced by defect nanostructures: A way to control cobalt disilicide precipitation during ion implantation , 2012 .

[37]  Jung Y. Huang Probing Inhomogeneous Lattice Deformation at Interface of Si(111)/SiO2 by Optical Second-Harmonic Reflection and Raman Spectroscopy , 1994 .

[38]  S. Myers,et al.  TRANSPORT AND REACTIONS OF GOLD IN SILICON CONTAINING CAVITIES , 1998 .

[39]  M. Nastasi,et al.  Physical mechanisms behind the ion-cut in hydrogen implanted silicon , 2002 .

[40]  Yaochun Shen,et al.  Surface contribution versus bulk contribution in surface nonlinear optical spectroscopy , 1999 .

[41]  R. Grange,et al.  Plasmonic Core–Shell Nanowires for Enhanced Second-Harmonic Generation , 2013, Plasmonics.