Gurtin-Murdoch surface elasticity theory revisit: An orbital-free density functional theory perspective

[1]  Shaohua Chen,et al.  An interface energy density-based theory considering the coherent interface effect in nanomaterials , 2017 .

[2]  Shaohua Chen,et al.  Surface effect in the bending of nanowires , 2016 .

[3]  Liping Liu,et al.  From atomistics to continuum: Effects of a free surface and determination of surface elasticity properties , 2015 .

[4]  Yin Yao,et al.  Surface effect on resonant properties of nanowires predicted by an elastic theory for nanomaterials , 2015 .

[5]  Shaohua Chen,et al.  Size effect of the surface energy density of nanoparticles , 2015 .

[6]  Shaohua Chen,et al.  Elastic Theory of Nanomaterials Based on Surface-Energy Density , 2014 .

[7]  D. Fang,et al.  A curvature-dependent interfacial energy-based interface stress theory and its applications to nano-structured materials: (I) General theory , 2014 .

[8]  E. Weig,et al.  Size-independent Young's modulus of inverted conical GaAs nanowire resonators , 2013, 1401.4010.

[9]  Gang Wang,et al.  Atomistic Calculations of Surface Energy of Spherical Copper Surfaces , 2012 .

[10]  M. Cherkaoui,et al.  Estimation of anisotropic elastic properties of nanocomposites using atomistic-continuum interphase model , 2012 .

[11]  W. G. Wolfer Elastic properties of surfaces on nanoparticles , 2011 .

[12]  P. Sharma,et al.  Curvature-dependent surface energy and implications for nanostructures , 2011 .

[13]  V. Gavini,et al.  A field theoretical approach to the quasi-continuum method , 2011 .

[14]  Harold S. Park,et al.  A continuum model for the mechanical behavior of nanowires including surface and surface-induced initial stresses , 2011 .

[15]  V. Gavini,et al.  A homogenization analysis of the field theoretic approach to the quasi-continuum method , 2010, 1012.2334.

[16]  I. Vasiliev,et al.  Computational study of the surface properties of aluminum nanoparticles , 2009 .

[17]  Khashayar Babaei Gavan,et al.  Size-dependent effective Young’s modulus of silicon nitride cantilevers , 2009 .

[18]  H. M. Lu,et al.  Size dependent interface energy and its applications , 2008 .

[19]  D. Vollath,et al.  On the role of surface energy and surface stress in phase-transforming nanoparticles , 2008 .

[20]  Sukky Jun,et al.  Atomistic calculations of interface elastic properties in noncoherent metallic bilayers , 2008 .

[21]  Grigorios A. Pavliotis,et al.  Multiscale Methods: Averaging and Homogenization , 2008 .

[22]  Young H. Park,et al.  Theoretical study of the surface energy, stress, and lattice contraction of silver nanoparticles , 2007 .

[23]  Z. P. Huang,et al.  Size-dependent effective properties of a heterogeneous material with interface energy effect: from finite deformation theory to infinitesimal strain analysis , 2007 .

[24]  Kaushik Bhattacharya,et al.  Quasi-continuum orbital-free density-functional theory : A route to multi-million atom non-periodic DFT calculation , 2007 .

[25]  Harold S. Park,et al.  Surface Cauchy-Born analysis of surface stress effects on metallic nanowires , 2007 .

[26]  Harold S. Park,et al.  A surface Cauchy–Born model for nanoscale materials , 2006 .

[27]  Kaushik Bhattacharya,et al.  Non-periodic finite-element formulation of orbital-free density functional theory , 2006 .

[28]  Jianbin Xu,et al.  Surface effects on elastic properties of silver nanowires: Contact atomic-force microscopy , 2006 .

[29]  Chengxin Wang,et al.  Size-dependent interface energy , 2006 .

[30]  Bhushan Lal Karihaloo,et al.  Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress , 2005 .

[31]  Vijay B. Shenoy,et al.  Atomistic calculations of elastic properties of metallic fcc crystal surfaces , 2005 .

[32]  Pradeep Sharma,et al.  Size-Dependent Eshelby’s Tensor for Embedded Nano-Inclusions Incorporating Surface/Interface Energies , 2004 .

[33]  Bernard Nysten,et al.  Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy , 2004 .

[34]  Hanchen Huang,et al.  Are surfaces elastically softer or stiffer , 2004 .

[35]  E. Bourhis,et al.  Measurement of the elastic constants of textured anisotropic thin films from x-ray diffraction data , 2003 .

[36]  Pradeep Sharma,et al.  Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities , 2003 .

[37]  V. Tewary,et al.  Thin-film elastic-property measurements with laser-ultrasonic SAW spectrometry , 2001 .

[38]  P. Renault,et al.  Characterization of thin film elastic properties using X-ray diffraction and mechanical methods: application to polycrystalline stainless steel , 2001 .

[39]  David J. Srolovitz,et al.  Surface stress model for intrinsic stresses in thin films , 2000 .

[40]  Vijay B. Shenoy,et al.  Size-dependent elastic properties of nanosized structural elements , 2000 .

[41]  Ray W. Ogden,et al.  Elastic surface—substrate interactions , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[42]  Emily A. Carter,et al.  Orbital-free kinetic-energy functionals for the nearly free electron gas , 1998 .

[43]  Huajian Gao,et al.  An atomistic interpretation of interface stress , 1998 .

[44]  R. Ogden,et al.  Plane deformations of elastic solids with intrinsic boundary elasticity , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[45]  Robert C. Cammarata,et al.  SURFACE AND INTERFACE STRESS EFFECTS IN THIN FILMS , 1994 .

[46]  Smargiassi,et al.  Orbital-free kinetic-energy functionals for first-principles molecular dynamics. , 1994, Physical review. B, Condensed matter.

[47]  Wang,et al.  Kinetic-energy functional of the electron density. , 1992, Physical review. B, Condensed matter.

[48]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[49]  Morton E. Gurtin,et al.  A continuum theory of elastic material surfaces , 1975 .

[50]  Joseph Callaway,et al.  Inhomogeneous Electron Gas , 1973 .

[51]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[52]  R. Tolman The Effect of Droplet Size on Surface Tension , 1949 .

[53]  D. Hartree The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods , 1928, Mathematical Proceedings of the Cambridge Philosophical Society.

[54]  Yachun Li,et al.  Physics and partial differential equations , 2012 .

[55]  Pierre-Louis Lions,et al.  The Mathematical Theory of Thermodynamic Limits: Thomas--Fermi Type Models , 1998 .

[56]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[57]  Morton E. Gurtin,et al.  Surface stress in solids , 1978 .

[58]  Jens Lothe John Price Hirth,et al.  Theory of Dislocations , 1968 .