Perspectives on EM metamaterials

Electromagnetic (EM) metamaterials have become a field of intense research activities. This paper presents a critical perspective of the field, with emphasis on fundamental concepts and practical applications. Metamaterials are explained in the general context of periodic structures. Resonant particle type and transmission line type metamaterials are compared, and their fundamental connection is established. Exotic phenomena recently reported and associated challenges are briefly reviewed. Practical applications are enumerated and illustrated by an example. The paper concludes with an optimistic outlook regarding the future of metamaterials.

[1]  Raafat R. Mansour,et al.  Microwave Filters for Communication Systems: Fundamentals, Design and Applications , 2007 .

[2]  T. Itoh,et al.  Positive/negative refractive index anisotropic 2-D metamaterials , 2003, IEEE Microwave and Wireless Components Letters.

[3]  Willie J Padilla,et al.  Composite medium with simultaneously negative permeability and permittivity , 2000, Physical review letters.

[4]  Ben A. Munk,et al.  Frequency Selective Surfaces: Theory and Design , 2000 .

[5]  W. E. Kock,et al.  Metallic delay lenses , 1948, Bell Syst. Tech. J..

[6]  E. M. Lifshitz,et al.  Electrodynamics of continuous media , 1961 .

[7]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[8]  Changjun Liu,et al.  Broadband Via-Free Microstrip Balun Using Metamaterial Transmission Lines , 2008, IEEE Microwave and Wireless Components Letters.

[9]  M. Teich,et al.  Fundamentals of Photonics , 1991 .

[10]  W. Rotman Plasma simulation by artificial dielectrics and parallel-plate media , 1962 .

[11]  J.-F. Frigon,et al.  Dynamic radiation pattern diversity (DRPD) MIMO using CRLH leaky-wave antennas , 2008, 2008 IEEE Radio and Wireless Symposium.

[12]  B. Hecht,et al.  Principles of nano-optics , 2006 .

[13]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[14]  R. Jakoby,et al.  Electrically Controllable Artificial Transmission Line Transformer for Matching Purposes , 2007, IEEE Transactions on Microwave Theory and Techniques.

[15]  M. Freire,et al.  Three-dimensional superresolution in metamaterial slab lenses: Experiment and theory , 2005 .

[16]  C. Camacho-Peñalosa,et al.  High-gain active composite right/left-handed leaky-wave antenna , 2006, IEEE Transactions on Antennas and Propagation.

[17]  B. A. Munk Why Periodic Structures May Not Be Able to Synthesize Negative Indices of Refraction , 2007, 2007 International Conference on Electromagnetics in Advanced Applications.

[18]  H. Giessen,et al.  Three-dimensional metamaterials at optical frequencies , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[19]  R. Ziolkowski,et al.  Wave propagation in media having negative permittivity and permeability. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  S. Cohn Analysis of the Metal‐Strip Delay Structure for Microwave Lenses , 1949 .

[21]  L. Felsen,et al.  Radiation and scattering of waves , 1972 .

[22]  T. Itoh,et al.  Application of the transmission line theory of left-handed (LH) materials to the realization of a microstrip "LH line" , 2002, IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313).

[23]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[24]  Zhaowei Liu,et al.  Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects , 2007, Science.

[25]  A. Grbic,et al.  Volumetric negative-refractive-index medium exhibiting broadband negative permeability , 2007 .

[26]  J. Kong Electromagnetic Wave Theory , 1986 .

[27]  K. Balmain,et al.  Negative Refraction Metamaterials: Fundamental Principles and Applications , 2005 .

[28]  John,et al.  Strong localization of photons in certain disordered dielectric superlattices. , 1987, Physical review letters.

[29]  V. Veselago The Electrodynamics of Substances with Simultaneously Negative Values of ∊ and μ , 1968 .

[30]  T. Itoh,et al.  Electronically scanned composite right/left handed microstrip leaky-wave antenna , 2004, IEEE Microwave and Wireless Components Letters.

[31]  Henry Jasik,et al.  Antenna engineering handbook , 1961 .

[32]  S. Gupta,et al.  CRLH leaky-wave real-time spectrum analyzer (RTSA) with unrestricted time-frequency resolution , 2008, 2008 IEEE MTT-S International Microwave Symposium Digest.

[33]  C. Caloz,et al.  CRLH Delay Line Pulse Position Modulation Transmitter , 2008, IEEE Microwave and Wireless Components Letters.

[34]  George V. Eleftheriades,et al.  A backward-wave antenna based on negative refractive index L-C networks , 2002, IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313).

[35]  A. Grbic,et al.  Overcoming the diffraction limit with a planar left-handed transmission-line lens. , 2004, Physical review letters.

[36]  Jr. R. Wyndrum Microwave filters, impedance-matching networks, and coupling structures , 1965 .

[37]  A. Oliner A periodic-structure negative-refractive-index medium without resonant elements , 2002 .

[38]  Tatsuo Itoh,et al.  Electromagnetic metamaterials : transmission line theory and microwave applications : the engineering approach , 2005 .

[39]  Harald Giessen,et al.  Plasmonic Building Blocks for Magnetic Molecules in Three‐Dimensional Optical Metamaterials , 2008 .

[40]  T. Itoh,et al.  Infinite Wavelength Resonant Antennas With Monopolar Radiation Pattern Based on Periodic Structures , 2007, IEEE Transactions on Antennas and Propagation.

[41]  Vincent Fusco,et al.  Electromagnetic Metamaterials: Physics and Engineering Explorations (Engheta, N. and Ziolkowski, R.W.; 2006) [Book Review] , 2007, IEEE Antennas and Propagation Magazine.

[42]  R. Collin Field theory of guided waves , 1960 .

[43]  G. Eleftheriades,et al.  Planar negative refractive index media using periodically L-C loaded transmission lines , 2002 .

[44]  T. Itoh,et al.  Transmission line approach of left-handed (LH) materials and microstrip implementation of an artificial LH transmission line , 2004, IEEE Transactions on Antennas and Propagation.

[45]  N. Engheta,et al.  Achieving transparency with plasmonic and metamaterial coatings. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  Z. Jacob,et al.  Optical Hyperlens: Far-field imaging beyond the diffraction limit. , 2006, Optics express.

[47]  Andrea Alù,et al.  Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide. , 2008, Physical review letters.

[48]  Tatsuo Itoh,et al.  Near-field focusing by a nonuniform leaky-wave interface , 2005 .

[49]  S. Tretyakov,et al.  Strong spatial dispersion in wire media in the very large wavelength limit , 2002, cond-mat/0211204.

[50]  C. Caloz,et al.  Generalized Coupled-Mode Approach of Metamaterial Coupled-Line Couplers: Coupling Theory, Phenomenological Explanation, and Experimental Demonstration , 2007, IEEE Transactions on Microwave Theory and Techniques.

[51]  J. Pendry,et al.  Low frequency plasmons in thin-wire structures , 1998 .

[52]  S. Gupta,et al.  Experimental Demonstration and Characterization of a Tunable CRLH Delay Line System for Impulse/Continuous Wave , 2007, IEEE Microwave and Wireless Components Letters.

[53]  Tatsuo Itoh,et al.  Dominant mode leaky-wave antenna with backfire-to-endfire scanning capability , 2002 .

[54]  Horace Lamb,et al.  On Group - Velocity , 1904 .

[55]  Alessandro Salandrino,et al.  Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations , 2006 .

[56]  G.V. Eleftheriades,et al.  A broadband series power divider using zero-degree metamaterial phase-shifting lines , 2005, IEEE Microwave and Wireless Components Letters.

[57]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[58]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[59]  H. Raether Surface Plasmons on Smooth and Rough Surfaces and on Gratings , 1988 .

[60]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[61]  Nader Engheta,et al.  Circuits with Light at Nanoscales: Optical Nanocircuits Inspired by Metamaterials , 2007, Science.

[62]  U. Leonhardt Optical Conformal Mapping , 2006, Science.

[63]  F. Falcone,et al.  Left handed coplanar waveguide band pass filters based on bi-layer split ring resonators , 2004, IEEE Microwave and Wireless Components Letters.

[64]  P. Russer,et al.  A 3-D Isotropic Left-Handed Metamaterial Based on the Rotated Transmission-Line Matrix (TLM) Scheme , 2007, IEEE Transactions on Microwave Theory and Techniques.

[65]  T. Itoh,et al.  Novel microwave devices and structures based on the transmission line approach of meta-materials , 2003, IEEE MTT-S International Microwave Symposium Digest, 2003.

[66]  K.M.K.H. Leong,et al.  Adaptive power controllable retrodirective array system for wireless sensor server applications , 2005, IEEE Transactions on Microwave Theory and Techniques.

[67]  A. Lagarkov,et al.  Near-perfect imaging in a focusing system based on a left-handed-material plate. , 2004, Physical review letters.

[68]  M. Rosenbluth,et al.  Limitations on subdiffraction imaging with a negative refractive index slab , 2002, cond-mat/0206568.

[69]  Alejandro Álvarez Melcón,et al.  Spatio-temporal Talbot phenomenon using metamaterial composite right/left-handed leaky-wave antennas , 2008 .

[70]  Costas M. Soukoulis,et al.  Wave Propagation: From Electrons to Photonic Crystals and Left-Handed Materials , 2008 .

[71]  A. Grbic,et al.  An isotropic three-dimensional negative-refractive-index transmission-line metamaterial , 2005 .

[72]  T. Itoh,et al.  A novel composite right-/left-handed coupled-line directional coupler with arbitrary coupling level and broad bandwidth , 2004, IEEE Transactions on Microwave Theory and Techniques.

[73]  T. Itoh,et al.  A compact enhanced-bandwidth hybrid ring using an artificial lumped-element left-handed transmission-line section , 2004, IEEE Transactions on Microwave Theory and Techniques.

[74]  Keith G. Balmain,et al.  Power flow for resonance cone phenomena in planar anisotropic metamaterials , 2003 .

[75]  D. Pozar Microwave Engineering , 1990 .

[76]  G. Eleftheriades,et al.  Negative refractive index metamaterials supporting 2-D waves , 2002, IEEE MTT-S International Microwave Symposium Digest.

[77]  T. Itoh,et al.  Arbitrary dual-band components using composite right/left-handed transmission lines , 2004, IEEE Transactions on Microwave Theory and Techniques.

[78]  Andrea Alù,et al.  Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors. , 2004, Physical review letters.

[79]  R M Walser,et al.  Wave refraction in negative-index media: always positive and very inhomogeneous. , 2002, Physical review letters.

[80]  C. Caloz,et al.  Dark and Bright Solitons in Left-Handed Nonlinear Transmission Line Metamaterials , 2007, 2007 IEEE/MTT-S International Microwave Symposium.

[81]  P. Morse,et al.  Methods of theoretical physics , 1955 .

[82]  G. Thiele,et al.  Antenna theory and design , 1981 .

[83]  Christophe Caloz,et al.  Study and realisation of dual-composite right/left-handed coplanar waveguide metamaterial in MMIC technology , 2008 .

[84]  T. Itoh,et al.  A reflectodirective system using a composite right/left-handed (CRLH) leaky-wave antenna and heterodyne mixing , 2004, IEEE Microwave and Wireless Components Letters.

[85]  M. Wegener,et al.  Negative Refractive Index at Optical Wavelengths , 2007, Science.

[86]  Roberto Merlin,et al.  Analytical solution of the almost-perfect-lens problem , 2004 .

[87]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[88]  Juan D. Baena,et al.  Effect of losses and dispersion on the focusing properties of left‐handed media , 2004 .

[89]  C. Caloz,et al.  An efficient method to determine Green's functions of a two-dimensional photonic crystal excited by a line source - the phased-array method , 2002 .

[90]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[91]  Xiang Zhang,et al.  Regenerating evanescent waves from a silver superlens. , 2003, Optics express.

[92]  Stewart,et al.  Extremely low frequency plasmons in metallic mesostructures. , 1996, Physical review letters.

[93]  Francisco Medina,et al.  Role of bianisotropy in negative permeability and left-handed metamaterials , 2002 .

[94]  M. Wegener,et al.  Magnetic Response of Metamaterials at 100 Terahertz , 2004, Science.

[95]  L. Brillouin,et al.  Wave Propagation in Periodic Structures , 1946 .

[96]  T. Itoh,et al.  Planar distributed structures with negative refractive index , 2004, IEEE Transactions on Microwave Theory and Techniques.

[97]  G. Tayeb,et al.  Anomalous refractive properties of photonic crystals , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[98]  S. Tretyakov,et al.  Three-dimensional isotropic perfect lens based on LC-loaded transmission lines , 2005, physics/0509149.

[99]  Javier Mata-Contreras,et al.  Distributed amplifiers with composite left/right-handed transmission lines , 2006 .