Computationally efficient solution to the Cahn-Hilliard equation: Adaptive implicit time schemes, mesh sensitivity analysis and the 3D isoperimetric problem

We present an efficient numerical framework for analyzing spinodal decomposition described by the Cahn-Hilliard equation. We focus on the analysis of various implicit time schemes for two and three dimensional problems. We demonstrate that significant computational gains can be obtained by applying embedded, higher order Runge-Kutta methods in a time adaptive setting. This allows accessing time-scales that vary by five orders of magnitude. In addition, we also formulate a set of test problems that isolate each of the sub-processes involved in spinodal decomposition: interface creation and bulky phase coarsening. We analyze the error fluctuations using these test problems on the split form of the Cahn-Hilliard equation solved using the finite element method with basis functions of different orders. Any scheme that ensures at least four elements per interface satisfactorily captures both sub-processes. Our findings show that linear basis functions have superior error-to-cost properties. This strategy - coupled with a domain decomposition based parallel implementation - let us notably augment the efficiency of a numerical Cahn-Hillard solver, and open new venues for its practical applications, especially when three dimensional problems are considered. We use this framework to address the isoperimetric problem of identifying local solutions in the periodic cube in three dimensions. The framework is able to generate all five hypothesized candidates for the local solution of periodic isoperimetric problem in 3D - sphere, cylinder, lamella, doubly periodic surface with genus two (Lawson surface) and triply periodic minimal surface (P Schwarz surface).

[1]  J. Warren,et al.  Diffuse-interface theory for structure formation and release behavior in controlled drug release systems. , 2007, Acta biomaterialia.

[2]  Perforated wetting layers from periodic patterns of lyophobic surface domains. , 2001 .

[3]  E. Bruce Nauman,et al.  Nonlinear diffusion and phase separation , 2001 .

[4]  L. Modica The gradient theory of phase transitions and the minimal interface criterion , 1987 .

[5]  Krishna Garikipati,et al.  A discontinuous Galerkin method for the Cahn-Hilliard equation , 2006, J. Comput. Phys..

[6]  A. Ros,et al.  The Isoperimetric Problem , 2003 .

[7]  Gerard T. Caneba,et al.  Studies of spinodal decomposition in a ternary polymer-solvent-nonsolvent system , 2002 .

[8]  Jincheng Wang,et al.  Phase-field modeling of isothermal dendritic coarsening in ternary alloys , 2008 .

[9]  Gustaf Söderlind,et al.  Adaptive Time-Stepping and Computational Stability , 2006 .

[10]  J. S. Rowlinson,et al.  Translation of J. D. van der Waals' “The thermodynamik theory of capillarity under the hypothesis of a continuous variation of density” , 1979 .

[11]  Robert Nürnberg,et al.  A posteriori estimates for the Cahn-Hilliard equation with obstacle free energy , 2009 .

[12]  C. M. Elliott,et al.  A nonconforming finite-element method for the two-dimensional Cahn-Hilliard equation , 1989 .

[13]  Shijun Jia,et al.  Polymer–Fullerene Bulk‐Heterojunction Solar Cells , 2009, Advanced materials.

[14]  Dynamics and pattern formation in thermally induced phase separation of polymer–solvent system , 2009 .

[15]  E. Nauman,et al.  Morphology predictions for ternary polymer blends undergoing spinodal decomposition , 1994 .

[16]  William Gropp,et al.  Modern Software Tools in Scientific Computing , 1994 .

[17]  Charles M. Elliott,et al.  A second order splitting method for the Cahn-Hilliard equation , 1989 .

[18]  Héctor D. Ceniceros,et al.  Computation of multiphase systems with phase field models , 2002 .

[19]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[20]  Khaled Omrani,et al.  Finite difference approximate solutions for the Cahn‐Hilliard equation , 2007 .

[21]  J. Tinsley Oden,et al.  Goal‐oriented error estimation for Cahn–Hilliard models of binary phase transition , 2011 .

[22]  Vipin Kumar,et al.  Parallel Multilevel Algorithms for Multi-constraint Graph Partitioning (Distinguished Paper) , 2000, Euro-Par.

[23]  William Gropp,et al.  Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries , 1997, SciTools.

[24]  D. J. Eyre,et al.  An Unconditionally Stable One-Step Scheme for Gradient Systems , 1997 .

[25]  Peter Sternberg,et al.  Periodic phase separation: the periodic Cahn-Hilliard and isoperimetric problems , 2006 .

[26]  van der Waals , 2010 .

[27]  B. Blanpain,et al.  An introduction to phase-field modeling of microstructure evolution , 2008 .

[28]  Vipin Kumar,et al.  Parallel static and dynamic multi‐constraint graph partitioning , 2002, Concurr. Comput. Pract. Exp..

[29]  N. Goldenfeld,et al.  Phase field model for three-dimensional dendritic growth with fluid flow. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Héctor D. Ceniceros,et al.  Three-dimensional, fully adaptive simulations of phase-field fluid models , 2010, J. Comput. Phys..

[31]  Long-Qing Chen Phase-Field Models for Microstructure Evolution , 2002 .

[32]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy and Free Energy of a Nonuniform System. III. Nucleation in a Two‐Component Incompressible Fluid , 2013 .

[33]  Héctor D. Ceniceros,et al.  A nonstiff, adaptive mesh refinement-based method for the Cahn-Hilliard equation , 2007, J. Comput. Phys..

[34]  M. Carpenter,et al.  Additive Runge-Kutta Schemes for Convection-Diffusion-Reaction Equations , 2003 .

[35]  Paul Steinmann,et al.  Natural element analysis of the Cahn–Hilliard phase-field model , 2010 .

[36]  R. Chella,et al.  Mixing of a two-phase fluid by cavity flow. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[37]  Adam C. Powell,et al.  Phase field simulations of early stage structure formation during immersion precipitation of polymeric membranes in 2D and 3D , 2006 .

[38]  John W. Cahn,et al.  Free Energy of a Nonuniform System. II. Thermodynamic Basis , 1959 .

[39]  J. Langer,et al.  New computational method in the theory of spinodal decomposition , 1975 .

[40]  Hester Bijl,et al.  Implicit Time Integration Schemes for the Unsteady Compressible Navier–Stokes Equations: Laminar Flow , 2002 .

[41]  Jaime Peraire,et al.  A time-adaptive finite volume method for the Cahn-Hilliard and Kuramoto-Sivashinsky equations , 2008, J. Comput. Phys..

[42]  Patrick R. Amestoy,et al.  Multifrontal parallel distributed symmetric and unsymmetric solvers , 2000 .

[43]  Daniel A. Cogswell A phase-field study of ternary multiphase microstructures , 2010 .

[44]  Antonio Ros,et al.  Stable periodic constant mean curvature surfaces and mesoscopic phase separation , 2007 .

[45]  Yinnian He,et al.  On large time-stepping methods for the Cahn--Hilliard equation , 2007 .

[46]  H. Frieboes,et al.  Three-dimensional multispecies nonlinear tumor growth--I Model and numerical method. , 2008, Journal of theoretical biology.

[47]  J. Waals The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density , 1979 .

[48]  S. Tremaine,et al.  On the Origin of Irregular Structure in Saturn's Rings , 2002, astro-ph/0211149.

[49]  Ming Wang,et al.  A nonconforming finite element method for the Cahn-Hilliard equation , 2010, J. Comput. Phys..

[50]  T. Hughes,et al.  Isogeometric analysis of the Cahn–Hilliard phase-field model , 2008 .

[51]  C. M. Elliott,et al.  On the Cahn-Hilliard equation with degenerate mobility , 1996 .

[52]  Andrea L. Bertozzi,et al.  Inpainting of Binary Images Using the Cahn–Hilliard Equation , 2007, IEEE Transactions on Image Processing.

[53]  Junseok Kim,et al.  A numerical method for the ternary Cahn--Hilliard system with a degenerate mobility , 2009 .

[54]  David M. Anderson,et al.  Periodic area-minimizing surfaces in block copolymers , 1988, Nature.

[55]  Kenneth A. Brakke,et al.  The Surface Evolver , 1992, Exp. Math..