Numerical analysis of non-constant pure rate of time preference: A model of climate policy

When current decisions affect welfare in the far-distant future, as with climate change, the use of a declining pure rate of time preference (PRTP) provides potentially important modeling flexibility. The difficulty of analyzing models with non-constant PRTP limits their application. We describe and provide software (available online) to implement an algorithm to numerically obtain a Markov perfect equilibrium for an optimal control problem with non-constant PRTP. We apply this software to a simplified version of the numerical climate change model used in the Stern Review. For our calibration, the policy recommendations are less sensitive to the PRTP than widely believed.

[1]  O. Azfar,et al.  Rationalizing hyperbolic discounting , 1999 .

[2]  D. Bromley Handbook of environmental economics , 1995 .

[3]  M. Weitzman,et al.  Stern Review : The Economics of Climate Change , 2006 .

[4]  Shunichi O. Tsutsui,et al.  Nonlinear strategies in dynamic duopolistic competition with sticky prices , 1990 .

[5]  Per Krusell,et al.  Equilibrium Welfare and Government Policy with Quasi-Geometric Discounting , 2001, J. Econ. Theory.

[6]  L. Karp,et al.  Discounting and climate change policy , 2007 .

[7]  Larry S. Karp,et al.  Global Warming and Hyperbolic Discounting , 2003 .

[8]  Stephen A. Ross,et al.  Long Forward and Zero-Coupon Rates Can Never Fall , 1996 .

[9]  Paul L. Fackler,et al.  Applied Computational Economics and Finance , 2002 .

[10]  David Laibson,et al.  Self-Control and Saving for Retirement , 1998 .

[11]  M. Weitzman A Review of The Stern Review on the Economics of Climate Change , 2007 .

[12]  W. Nordhaus The "Stern Review" on the Economics of Climate Change , 2006 .

[13]  David I. Laibson,et al.  Dynamic Choices of Hyperbolic Consumers , 2001 .

[14]  M. Weitzman Subjective Expectations and Asset-Return Puzzles , 2007 .

[15]  Larry Karp,et al.  Non-Constant Discounting in Continuous Time , 2004, J. Econ. Theory.

[16]  Christian Gollier,et al.  Time Horizon and the Discount Rate , 1999, J. Econ. Theory.

[17]  A. Pakes,et al.  Computing Markov Perfect Nash Equilibria: Numerical Implications of a Dynamic Differentiated Product Model , 1992 .

[18]  Christian Gollier,et al.  The consumption-based determinants of the term structure of discount rates , 2005, SSRN Electronic Journal.

[19]  E. Dockner,et al.  Differential Games in Economics and Management Science , 2001 .

[20]  G. Heal,et al.  Intertemporal Welfare Economics and the Environment , 2001 .

[21]  Karl-Gustaf Löfgren,et al.  Renewable Resources and Economic Sustainability: A Dynamic Analysis with Heterogeneous Time Preferences , 2000 .

[22]  Christian Gollier,et al.  Discounting an uncertain future , 2002 .

[23]  C. Hepburn,et al.  Declining Discount Rates: The Long and the Short of it , 2005 .

[24]  Graciela Chichilnisky,et al.  An axiomatic approach to sustainable development , 1996 .

[25]  Partha Dasgupta,et al.  Commentary: The Stern Review's Economics of Climate Change: , 2007 .

[26]  M. Cropper,et al.  Preferences for life saving programs: how the public discounts time and age , 1994 .

[27]  B. McCarl,et al.  Economics , 1870, The Indian medical gazette.

[28]  Richard J. Zeckhauser,et al.  Aggregation of Heterogeneous Time Preferences , 2005, Journal of Political Economy.

[29]  K. Judd Numerical methods in economics , 1998 .

[30]  C. Plott psychology and economics , 1990 .

[31]  小林 信治,et al.  自然資源および環境資源への制御理論の適用-解説-上-(Journal of Environmental Economics and Management,4,1977) , 1981 .

[32]  J. Shoven,et al.  Gamma Discounting , 2001 .