Latent Fingerprint Matching: Performance Gain via Feedback from Exemplar Prints

Latent fingerprints serve as an important source of forensic evidence in a court of law. Automatic matching of latent fingerprints to rolled/plain (exemplar) fingerprints with high accuracy is quite vital for such applications. However, latent impressions are typically of poor quality with complex background noise which makes feature extraction and matching of latents a significantly challenging problem. We propose incorporating top-down information or feedback from an exemplar to refine the features extracted from a latent for improving latent matching accuracy. The refined latent features (e.g. ridge orientation and frequency), after feedback, are used to re-match the latent to the top K candidate exemplars returned by the baseline matcher and resort the candidate list. The contributions of this research include: (i) devising systemic ways to use information in exemplars for latent feature refinement, (ii) developing a feedback paradigm which can be wrapped around any latent matcher for improving its matching performance, and (iii) determining when feedback is actually necessary to improve latent matching accuracy. Experimental results show that integrating the proposed feedback paradigm with a state-of-the-art latent matcher improves its identification accuracy by 0.5-3.5 percent for NIST SD27 and WVU latent databases against a background database of 100k exemplars.

[1]  George Adams,et al.  Next-Generation Identification , 2015 .

[2]  Arun Ross,et al.  Score normalization in multimodal biometric systems , 2005, Pattern Recognit..

[3]  Anil K. Jain,et al.  On Latent Fingerprint Image Quality , 2012, IWCF.

[4]  Anil K. Jain,et al.  Orientation Field Estimation for Latent Fingerprint Enhancement , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Ben Coppin,et al.  Artificial Intelligence Illuminated , 2004 .

[6]  Mikael Bodén,et al.  A guide to recurrent neural networks and backpropagation , 2001 .

[7]  Anil K. Jain,et al.  A feedback paradigm for latent fingerprint matching , 2013, 2013 International Conference on Biometrics (ICB).

[8]  J. G. Hollands,et al.  Engineering Psychology and Human Performance , 1984 .

[9]  Henry C. Lee,et al.  Advances in Fingerprint Technology, Second Edition , 2001 .

[10]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[11]  I. Dror,et al.  When emotions get the better of us: the effect of contextual top‐down processing on matching fingerprints , 2005 .

[12]  Anil K. Jain,et al.  Latent Palmprint Matching , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Craig I. Watson,et al.  Fingerprint Vendor Technology Evaluation 2003: Summary of Results and Analysis Report , 2004 .

[14]  Alex Pentland,et al.  A Bayesian Computer Vision System for Modeling Human Interactions , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  R. A. Hicklin,et al.  ELFT-EFS Evaluation of Latent Fingerprint Technologies: Extended Feature Sets [Evaluation #2] , 2011 .

[16]  Anil K. Jain,et al.  Latent Fingerprint Matching Using Descriptor-Based Hough Transform , 2011, IEEE Transactions on Information Forensics and Security.

[17]  Josef Bigün,et al.  Local Features for Enhancement and Minutiae Extraction in Fingerprints , 2008, IEEE Transactions on Image Processing.

[18]  Christophe Champod,et al.  Fingerprints and Other Ridge Skin Impressions, Second Edition , 2016 .

[19]  Ashim K. Datta Advances in Fingerprint Technology , 2001 .

[20]  Shimon Ullman,et al.  Combined Top-Down/Bottom-Up Segmentation , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Anil K. Jain,et al.  On latent fingerprint enhancement , 2010, Defense + Commercial Sensing.

[22]  Antonio Torralba,et al.  Top-down control of visual attention in object detection , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[23]  N. R. J. Fieller,et al.  A Recursive Algorithm for Null Distributions for Outliers: I. Gamma Samples , 1979 .

[24]  S. Lalitha,et al.  Multiple outlier test for upper outliers in an exponential sample , 2012 .

[25]  Anil K. Jain,et al.  Automatic segmentation of latent fingerprints , 2012, 2012 IEEE Fifth International Conference on Biometrics: Theory, Applications and Systems (BTAS).

[26]  David R. Ashbaugh,et al.  Quantitative-Qualitative Friction Ridge Analysis: An Introduction to Basic and Advanced Ridgeology , 1999 .

[27]  David G. Stork,et al.  Pattern Classification (2nd ed.) , 1999 .

[28]  Miljenko Huzak,et al.  Chi-Square Distribution , 2011, International Encyclopedia of Statistical Science.

[29]  Anil K. Jain,et al.  Latent Fingerprint Matching , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.