Analytical model of a solarium for cold climate: a new approach

Abstract In this present communication, a new approach has been evolved for analysing the thermal performance of a solarium useful in a cold climate. So as to trap the maximum solar radiation, the concept of glass windows (with movable insulation) in both the east and west walls of the sun space, besides in its south facing will and with the roof made of glass, has been introduced. Considering the ground temperature constant over a day, an overall heat transfer coefficient has been incorporated for the estimation of the heat flux transferred from the floor of the solarium to the ground. The introduction of this heat transfer coefficient eliminates the need of solving the conductivity equation for the heat flux conducted from the floor of the solarium to the ground. On account of the almost insulating behaviour of wood, an overall heat transfer coefficient has been taken for an all wooden structure of the solarium. Carrying out a transient analysis, explicit expressions for the temperatures of the sun space, the blackened absorbing surface of the water wall, the water itself, the living space and the isothermal masses have been developed as a function of time. These temperatures are required for the evaluation of the thermal energy taken in by the water wall, the heat flux entering the sun space and living space and the thermal energy distributed over the isothermal masses lying in the living space.