Metric semantics from partial order semantics

Abstract. In dealing with denotational semantics of programming languages partial orders resp. metric spaces have been used with great benefit in order to provide a meaning to recursive and repetitive constructs. This paper presents two methods to define a metric on a subset $M$ of a complete partial order $D$ such that $M$ is a complete metric spaces and the metric semantics on $M$ coincides with the partial order semantics on $D$ when the same semantic operators are used. The first method is to add a ‘length’ on a complete partial order which means a function $\rho : D \to {\Bbb N} \cup \{\infty\}$ of increasing power. The second is based on the ideas of [11] and uses pseudo rank orderings, i.e. monotone sequences of monotone functions $\pi_n : D \to D$. We show that SFP domains can be characterized as special kinds of rank orderded cpo's. We also discuss the connection between the Lawson topology and the topology induced by the metric.

[1]  Pierre America,et al.  Solving Reflexive Domain Equations in a Category of Complete Metric Spaces , 1989, J. Comput. Syst. Sci..

[2]  C. A. R. Hoare,et al.  Communicating sequential processes , 1978, CACM.

[3]  Kim R. Wagner,et al.  Solving Recursive Domain Equations with Enriched Categories. , 1994 .

[4]  J. W. de Bakker,et al.  Processes and the Denotational Semantics of Concurrency , 1982, Inf. Control..

[5]  J. W. de Bakker,et al.  Metric Pomset Semantics for a Concurrnt Language with Recursion , 1990, Semantics of Systems of Concurrent Processes.

[6]  Manfred Broy,et al.  Operational and denotational semantics with explicit concurrency , 1992, Fundamenta Informaticae.

[7]  Michael B. Smyth,et al.  Totally bounded spaces and compact ordered spaces as domains of computation , 1991 .

[8]  S. G. Matthews The Cycle Contraction Mapping Theorem , 1992 .

[9]  Robin Milner,et al.  Communication and concurrency , 1989, PHI Series in computer science.

[10]  Samson Abramsky,et al.  A Domain Equation for Bisimulation , 1991, Inf. Comput..

[11]  Gordon D. Plotkin,et al.  The category-theoretic solution of recursive domain equations , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[12]  Jan J. M. M. Rutten,et al.  On the Foundation of Final Semantics: Non-Standard Sets, Metric Spaces, Partial Orders , 1992, REX Workshop.

[13]  Gordon D. Plotkin,et al.  A Powerdomain Construction , 1976, SIAM J. Comput..

[14]  G Comyn,et al.  Metric approximations in ordered domains , 1986 .

[15]  Mila E. Majster-Cederbaum,et al.  Towards a Foundation for Semantics in Complete Metric Spaces , 1991, Inf. Comput..

[16]  Glynn Winskel,et al.  Event Structure Semantics for CCS and Related Languages , 1982, ICALP.

[17]  Marcello M. Bonsangue,et al.  Generalized Metric Spaces: Completion, Topology, and Powerdomains via the Yoneda Embedding , 1995, Theor. Comput. Sci..

[18]  Christel Baier,et al.  Metric completion versus ideal completion , 1996 .

[19]  Christel Baier,et al.  Denotational Semantics in the CPO and Metric Approach , 1994, Theor. Comput. Sci..

[20]  John C. Mitchell,et al.  PER models of subtyping, recursive types and higher-order polymorphism , 1992, POPL '92.

[21]  Antoni W. Mazurkiewicz,et al.  Basic notions of trace theory , 1988, REX Workshop.

[22]  K. Hofmann,et al.  A Compendium of Continuous Lattices , 1980 .

[23]  Michael B. Smyth,et al.  Quasi Uniformities: Reconciling Domains with Metric Spaces , 1987, MFPS.

[24]  Samson Abramsky,et al.  Domain theory , 1995, LICS 1995.

[25]  Vaughan R. Pratt,et al.  The Pomset Model of Parallel Processes: Unifying the Temporal and the Spatial , 1984, Seminar on Concurrency.

[26]  Carl A. Gunter Profinite Solutions For Recursive Domain Equations , 1985 .

[27]  Rita Loogen,et al.  Modelling nondeterministic concurrent processes with event structures , 1991, Fundam. Informaticae.