Comparative Genomic, Transcriptomic, and Proteomic Analysis of the Limosilactobacillus fermentum U-21 Strain Promising for the Creation of a Pharmabiotic

[1]  O. Savinova,et al.  Exoproteome Analysis of Antagonistic Interactions between the Probiotic Bacteria Limosilactobacillus reuteri LR1 and Lacticaseibacillus rhamnosus F and Multidrug Resistant Strain of Klebsiella pneumonia , 2021, International journal of molecular sciences.

[2]  E. Poluektova,et al.  Biomarkers and Utility of the Antioxidant Potential of Probiotic Lactobacilli and Bifidobacteria as Representatives of the Human Gut Microbiota , 2021, Biomedicines.

[3]  R. Yunes,et al.  The Putative Antidepressant Mechanisms of Probiotic Bacteria: Relevant Genes and Proteins , 2021, Nutrients.

[4]  A. Sjöstedt,et al.  The Role of ClpB in Bacterial Stress Responses and Virulence , 2021, Frontiers in Molecular Biosciences.

[5]  A. Lang,et al.  Probiotics for Constipation in Parkinson Disease , 2021, Neurology.

[6]  F. Zárate Mondragón,et al.  Lactobacillus acidophilus LB: a useful pharmabiotic for the treatment of digestive disorders , 2020, Therapeutic advances in gastroenterology.

[7]  A. Lang,et al.  Probiotics for constipation in Parkinson's disease: A randomized placebo-controlled study. , 2020, Neurology.

[8]  B. Pot,et al.  Live biotherapeutic products: the importance of a defined regulatory framework , 2020, Experimental & Molecular Medicine.

[9]  E. Poluektova,et al.  Protective effects of Lactobacillus fermentum U-21 against paraquat-induced oxidative stress in Caenorhabditis elegans and mouse models , 2020, World Journal of Microbiology and Biotechnology.

[10]  F. Ren,et al.  Global transcriptomic analysis of Lactobacillus plantarum CAUH2 in response to hydrogen peroxide stress. , 2020, Food microbiology.

[11]  S. Illarioshkin,et al.  The use of a pharmabiotic based on the Lactobacillus fermentum U-21 strain to modulate the neurodegenerative process in an experimental model of Parkinson disease , 2020 .

[12]  Z. Pan,et al.  Transcriptional homogenization of Lactobacillus rhamnosus hsryfm 1301 under heat stress and oxidative stress , 2020, Applied Microbiology and Biotechnology.

[13]  R. Yunes,et al.  A Multi-strain Potential Probiotic Formulation of GABA-Producing Lactobacillus plantarum 90sk and Bifidobacterium adolescentis 150 with Antidepressant Effects , 2019, Probiotics and Antimicrobial Proteins.

[14]  Frederic D. Schramm,et al.  Protein aggregation in bacteria , 2019, FEMS microbiology reviews.

[15]  Benjamin J. Nelson,et al.  Complex Responses to Hydrogen Peroxide and Hypochlorous Acid by the Probiotic Bacterium Lactobacillus reuteri , 2019, mSystems.

[16]  P. Gazerani Probiotics for Parkinson’s Disease , 2019, International journal of molecular sciences.

[17]  M. Desvaux,et al.  Cell Wall Hydrolases in Bacteria: Insight on the Diversity of Cell Wall Amidases, Glycosidases and Peptidases Toward Peptidoglycan , 2019, Front. Microbiol..

[18]  C. Jeffery Intracellular/surface moonlighting proteins that aid in the attachment of gut microbiota to the host , 2019, AIMS Microbiology.

[19]  Y. Shoenfeld,et al.  The microbiome in autoimmune diseases , 2019, Clinical and experimental immunology.

[20]  J. Błasiak,et al.  Anti-proliferative, pro-apoptotic and anti-oxidative activity of Lactobacillus and Bifidobacterium strains: A review of mechanisms and therapeutic perspectives , 2018, Critical reviews in food science and nutrition.

[21]  C. Alcántara,et al.  Polyphosphate in Lactobacillus and Its Link to Stress Tolerance and Probiotic Properties , 2018, Front. Microbiol..

[22]  N. V. Zakharevich,et al.  In silico Identification of Metagenomic Signature Describing Neurometabolic Potential of Normal Human Gut Microbiota , 2018, Russian Journal of Genetics.

[23]  E. Poluektova,et al.  A bioluminescent test system reveals valuable antioxidant properties of lactobacillus strains from human microbiota , 2018, World Journal of Microbiology and Biotechnology.

[24]  Yongqi Huang,et al.  Bacterial cupredoxin azurin hijacks cellular signaling networks: Protein–protein interactions and cancer therapy , 2017, Protein science : a publication of the Protein Society.

[25]  B. Svensson,et al.  Exo‐ and surface proteomes of the probiotic bacterium Lactobacillus acidophilus NCFM , 2017, Proteomics.

[26]  Weifen Li,et al.  Antioxidant Properties of Probiotic Bacteria , 2017, Nutrients.

[27]  C. Hill,et al.  Next-generation probiotics: the spectrum from probiotics to live biotherapeutics , 2017, Nature Microbiology.

[28]  Fabian Rivera-Chávez,et al.  Oxygen as a driver of gut dysbiosis. , 2017, Free radical biology & medicine.

[29]  B. Svensson,et al.  Comparative proteomics of oxidative stress response of Lactobacillus acidophilus NCFM reveals effects on DNA repair and cysteine de novo synthesis , 2017, Proteomics.

[30]  J. Steele,et al.  Transcriptome analysis of Bifidobacterium longum strains that show a differential response to hydrogen peroxide stress. , 2015, Journal of biotechnology.

[31]  V. Mishra,et al.  Probiotics as potential antioxidants: a systematic review. , 2015, Journal of agricultural and food chemistry.

[32]  M. Gilmore,et al.  Transcriptomic Response of Enterococcus faecalis V583 to Low Hydrogen Peroxide Levels , 2015, Current Microbiology.

[33]  T. Dinan,et al.  Conference on 'Diet, gut microbiology and human health' Symposium 4: Manipulating the microbiome: health and therapeutic opportunities: Gut microbiota, the pharmabiotics they produce and host health , 2014 .

[34]  P. O’Toole,et al.  Lactobacillus reuteri 100-23 Modulates Urea Hydrolysis in the Murine Stomach , 2014, Applied and Environmental Microbiology.

[35]  A. Hart,et al.  Altered human gut dendritic cell properties in ulcerative colitis are reversed by Lactobacillus plantarum extracellular encrypted peptide STp. , 2014, Molecular nutrition & food research.

[36]  A. Holmgren,et al.  The thioredoxin antioxidant system. , 2014, Free radical biology & medicine.

[37]  F. Shanahan,et al.  Pharmabiotic manipulation of the microbiota in gastrointestinal disorders, from rationale to reality. , 2010, Gastroenterology clinics of North America.

[38]  C. Hill Engineered pharmabiotics with improved therapeutic potential , 2008, Human vaccines.

[39]  Henry F. Chambers,et al.  Role of SraP, a Serine-Rich Surface Protein of Staphylococcus aureus, in Binding to Human Platelets , 2005, Infection and Immunity.

[40]  F. Barras,et al.  Methionine sulfoxide reductases in prokaryotes. , 2005, Biochimica et biophysica acta.

[41]  H. Atomi,et al.  Enzymatic Characterization of a Prokaryotic Urea Carboxylase , 2004, Journal of bacteriology.

[42]  S. Fetissov Role of gut bacteria in the physiological regulation of appetite and energy metabolism , 2021 .