Resonant Acoustic Profiling (RAP™) and Rupture Event Scanning (REVS™)

Following the release of widely available commercial instruments in the 1990s, researchers have driven the development of biosensor-based methods for profiling and screening of small molecule and proteinaceous therapeutic drug candidates. Medicinal chemists have in turn demanded faster and more accurate assays for characterisation of drug candidate interactions with target receptors, serum proteins and side-effect profiling receptors. In response to this challenge, Akubio Ltd. (Cambridge, UK) has been developing an advanced label-free detection platform, resonant acoustic profiling (RAP™). This evolution of the basic QCM approach has the potential to change the way assays are performed and to generate novel information on molecular interactions. Key attributes covered in this chapter include the ability to multiplex to high numbers of resonators, the addition of robust interfacial surface chemistries, fully automated sample handling and sample processing, disposable microfluidic cassettes with submicrolitre dead volumes, and more sensitive detection electronics.

[1]  Stephen V. Letcher,et al.  Piezoelectric Biosensor for Detection of Salmonella typhimurium , 1997 .

[2]  S. Dübel,et al.  Determination of phage antibody affinities to antigen by a microbalance sensor system. , 1999, BioTechniques.

[3]  J. Reimund,et al.  Increased production of tumour necrosis factor-alpha interleukin-1 beta, and interleukin-6 by morphologically normal intestinal biopsies from patients with Crohn's disease. , 1996, Gut.

[4]  Hideo Tanaka,et al.  Conventional diagnosis of C-reactive protein in serum using latex piezoelectric immunoassay , 2001 .

[5]  J. Pachón,et al.  Interleukin-1 beta in pleural fluids of different etiologies. Its role as inflammatory mediator in empyema. , 1995, Chest.

[6]  S. Kurosawa,et al.  Latex piezoelectric immunoassay: analysis of C-reactive protein in human serum , 2000, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[7]  M. Grätzel,et al.  A novel immunosensor for herpes viruses. , 1994, Analytical chemistry.

[8]  D. Burton,et al.  The antiviral activity of antibodies in vitro and in vivo , 2001, Advances in Immunology.

[9]  Peter Hauptmann,et al.  New design for QCM sensors in liquids , 1995 .

[10]  Stephen J. Martin,et al.  Manipulation of electroactive polymer film viscoelasticity: The roles of applied potential and frequency , 1999 .

[11]  E. Evans Probing the relation between force--lifetime--and chemistry in single molecular bonds. , 2001, Annual review of biophysics and biomolecular structure.

[12]  J. Mandel,et al.  Ultrasensitive quartz crystal microbalance sensors for detection of M13-Phages in liquids. , 2001, Biosensors & bioelectronics.

[13]  L. Nie,et al.  Ion-selective piezoelectric sensor for niacinamide assay in serum and urine. , 2001, Journal of pharmaceutical and biomedical analysis.

[14]  S. Drost,et al.  Characterization of immobilization methods for African swine fever virus protein and antibodies with a piezoelectric immunosensor. , 1998, Biosensors & bioelectronics.

[15]  Toshiaki Nomura,et al.  Frequency shifts of piezoelectric quartz crystals immersed in organic liquids , 1982 .

[16]  G. Lubrano,et al.  A quartz crystal microbalance displacement assay for Listeria monocytogenes , 1996 .

[17]  Matthew A. Cooper,et al.  Direct and sensitive detection of a human virus by rupture event scanning , 2001, Nature Biotechnology.

[18]  E. Evans,et al.  Strength of a weak bond connecting flexible polymer chains. , 1999, Biophysical journal.

[19]  F. Chew,et al.  Self-assembled monolayer-based piezoelectric crystal immunosensor for the quantification of total human immunoglobulin E. , 1999, Analytical biochemistry.

[20]  I. Willner,et al.  Piezoelectric immunosensors for urine specimens of Chlamydia trachomatis employing quartz crystal microbalance microgravimetric analyses. , 1997, Analytical chemistry.

[21]  D. P. Mack,et al.  Interactions of HIV-1 TAR RNA with Tat-derived peptides discriminated by on-line acoustic wave detector. , 1999, Analytical chemistry.

[22]  Russell Higuchi,et al.  Kinetic PCR Analysis: Real-time Monitoring of DNA Amplification Reactions , 1993, Bio/Technology.

[23]  G. Hayward,et al.  A TRANSVERSE SHEAR MODEL OF A PIEZOELECTRIC CHEMICAL SENSOR , 1998 .

[24]  R. Yu,et al.  A piezoelectric immunoagglutination assay for Toxoplasma gondii antibodies using gold nanoparticles. , 2004, Biosensors & bioelectronics.

[25]  F. Caruso,et al.  In-situ measurement of DNA immobilization and hybridization using a 27 MHZ quartz crystal microbalance , 1998 .

[26]  U. Seifert,et al.  Rupture of multiple parallel molecular bonds under dynamic loading. , 2000, Physical review letters.

[27]  M. D. Ward,et al.  Real‐Time Measurement of Anchorage‐Dependent Cell Adhesion Using a Quartz Crystal Microbalance , 1993, Biotechnology progress.

[28]  G. Shen,et al.  A PEG piezoelectric immunoassay for the determination of transferrin in human serum , 2000 .

[29]  Jay W. Grate,et al.  Acoustic Wave Sensors , 1996 .

[30]  N. Kamo,et al.  Latex piezoelectric immunoassay: Effect of interfacial properties , 1995 .

[31]  Fredrik Höök,et al.  Characterization of PNA and DNA Immobilization and Subsequent Hybridization with DNA Using Acoustic-Shear-Wave Attenuation Measurements , 2001 .

[32]  S. Wakida,et al.  Conventional diagnosis of Treponema pallidum in serum using latex piezoelectric immunoassay , 2001 .

[33]  P. Casey Markers of myocardial injury and dysfunction. , 2004, AACN clinical issues.

[34]  M. Thompson,et al.  Interfacial Properties and the Response of the Transverse Acoustic Wave Device in Electrolytes , 2000 .

[35]  C. Frank,et al.  Transient Quartz Crystal Microbalance Behaviors Compared , 2002 .

[36]  O'sullivan,et al.  Human cytomegalovirus detection by a quartz crystal microbalance immunosensor. , 2000, Enzyme and microbial technology.

[37]  David Klenerman,et al.  “Hearing” Bond Breakage. Measurement of Bond Rupture Forces Using a Quartz Crystal Microbalance , 2000 .

[38]  P. Parren,et al.  Listening for viral infection , 2001, Nature Biotechnology.

[39]  Rich,et al.  Implementing surface plasmon resonance biosensors in drug discovery. , 2000, Pharmaceutical science & technology today.

[40]  L. Bao,et al.  Determination of microorganisms with a quartz crystal microbalance sensor , 1996 .

[41]  H Roos,et al.  Biosensor analysis of the interaction between immobilized human serum albumin and drug compounds for prediction of human serum albumin binding levels. , 2000, Journal of medicinal chemistry.

[42]  Max Sussman,et al.  Topley and Wilson's Microbiology and Microbial infections , 1998 .

[43]  Hideo Tanaka,et al.  Conventional detection method of fibrinogen and fibrin degradation products using latex piezoelectric immunoassay. , 2003, Biosensors & bioelectronics.

[44]  I. Park,et al.  Thiolated Salmonella antibody immobilization onto the gold surface of piezoelectric quartz crystal. , 1998, Biosensors & bioelectronics.

[45]  S Tombelli,et al.  Biosensors as new analytical tool for detection of Genetically Modified Organisms (GMOs) , 2001, Fresenius' journal of analytical chemistry.

[46]  Jiming Hu,et al.  Detection of hepatitis B virus by piezoelectric biosensor. , 2002, Journal of pharmaceutical and biomedical analysis.

[47]  Jacqueline Krim,et al.  Scanning tunneling microscope measurements of the amplitude of vibration of a quartz crystal oscillator , 2000 .

[48]  L. Richert,et al.  Cell interactions with polyelectrolyte multilayer films. , 2002, Biomacromolecules.

[49]  T. Sogorb,et al.  An extended Butterworth Van Dyke model for quartz crystal microbalance applications in viscoelastic fluid media , 2001, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[50]  G M Whitesides,et al.  A strategy for the generation of surfaces presenting ligands for studies of binding based on an active ester as a common reactive intermediate: a surface plasmon resonance study. , 1999, Analytical chemistry.

[51]  K. Otto,et al.  Effect of Ionic Strength on Initial Interactions ofEscherichia coli with Surfaces, Studied On-Line by a Novel Quartz Crystal Microbalance Technique , 1999, Journal of bacteriology.

[52]  C. Percival,et al.  Molecular imprinted polymer coated QCM for the detection of nandrolone. , 2002, The Analyst.

[53]  W F Heinz,et al.  Spatially resolved force spectroscopy of biological surfaces using the atomic force microscope. , 1999, Trends in biotechnology.

[54]  Michael D. Ward,et al.  Piezoelectric Cell Growth Sensor , 1991, Bio/Technology.

[55]  S. Yao,et al.  Immunosensor for the differentiation and detection of Salmonella species based on a quartz crystal microbalance. , 2002, Biosensors & bioelectronics.

[56]  G. Guilbault,et al.  Piezoelectric (PZ) Immunosensors and Their Applications , 1991 .

[57]  K. Pavey,et al.  Application of the quartz crystal microbalance to the monitoring of Staphylococcus epidermidis antigen-antibody agglutination. , 1999, Journal of pharmaceutical and biomedical analysis.

[58]  E. Sackmann,et al.  Measuring Ligand−Receptor Unbinding Forces with Magnetic Beads: Molecular Leverage† , 2000 .

[59]  N. Rothwell,et al.  CNS injury: the role of the cytokine IL-1. , 2004, Veterinary journal.

[60]  M. Ward,et al.  In Situ Interfacial Mass Detection with Piezoelectric Transducers , 1990, Science.

[61]  S. J. Martin,et al.  A model for the quartz crystal microbalance frequency response to wetting characteristics of corrugated surfaces. , 2004, Analytical chemistry.

[62]  F. Caruso,et al.  Quartz crystal microbalance study of DNA immobilization and hybridization for nucleic Acid sensor development. , 1997, Analytical chemistry.

[63]  I. Park,et al.  Operational characteristics of an antibody-immobilized QCM system detecting Salmonella spp. , 2000, Biosensors & bioelectronics.

[64]  L. Barnes,et al.  A rapid, non‐destructive method for the determination of Staphylococcus epidermidis adhesion to surfaces using quartz crystal resonant sensor technology , 2001, Letters in applied microbiology.

[65]  Sara Tombelli,et al.  Quartz crystal microbalance (QCM) affinity biosensor for genetically modified organisms (GMOs) detection. , 2003, Biosensors & bioelectronics.

[66]  B. Kasemo,et al.  Simultaneous frequency and dissipation factor QCM measurements of biomolecular adsorption and cell adhesion. , 1997, Faraday discussions.

[67]  K. Marx,et al.  A quartz crystal microbalance cell biosensor: detection of microtubule alterations in living cells at nM nocodazole concentrations. , 2001, Biosensors & bioelectronics.

[68]  R. Merkel,et al.  Energy landscapes of receptor–ligand bonds explored with dynamic force spectroscopy , 1999, Nature.

[69]  G M Whitesides,et al.  A self-assembled monolayer for the binding and study of histidine-tagged proteins by surface plasmon resonance. , 1996, Analytical chemistry.

[70]  Matthew A. Cooper,et al.  Optical biosensors in drug discovery , 2002, Nature Reviews Drug Discovery.

[71]  G. Hayward,et al.  Mass response of the thickness-shear mode acoustic wave sensor in liquids as a central misleading dogma , 1997, Proceedings of International Frequency Control Symposium.

[72]  B. Kasemo,et al.  The Piezoelectric Quartz Crystal Mass and Dissipation Sensor: A Means of Studying Cell Adhesion , 1998 .

[73]  Y. Okahata,et al.  Detection of Cell Adhesion Behaviors by Using a Quartz Crystal Microbalance. , 1993 .

[74]  B. Graves,et al.  Equilibrium analysis of high affinity interactions using BIACORE. , 1998, Analytical biochemistry.

[75]  F. Chew,et al.  Piezoelectric quartz crystal based label-free analysis for allergy disease. , 2000, Biosensors & bioelectronics.

[76]  H. Vogel,et al.  Intrinsic biophysical monitors of transducin activation: fluorescence, UV-visible spectroscopy, light scattering, and evanescent field techniques. , 2000, Methods in enzymology.

[77]  K. Keiji Kanazawa,et al.  Mechanical behaviour of films on the quartz microbalance , 1997 .

[78]  C. Steinem,et al.  Piezoelectric Mass-Sensing Devices as Biosensors-An Alternative to Optical Biosensors? , 2000, Angewandte Chemie.

[79]  H. Galla,et al.  Analysis of the composite response of shear wave resonators to the attachment of mammalian cells. , 2000, Biophysical journal.