Sufficient Completeness and Parameterized Proofs by Induction

Theorem proving in parameterized specifications allows for shorter and more structured proofs. Moreover, a generic proof can be given just once and reused for each instantiation of the parameters. We present procedures to test sufficient completeness and to prove and disprove inductive properties automatically in parameterized conditional specifications. This new method when limited to non-parameterized conditional specifications, can refute general clauses; refutational completeness is also preserved for boolean ground convergent rewrite systems even if the functions are not sufficiently complete and the constructors are not free. The method has been implemented in the prover SPIKE. Based on computer experiments, the method appears to be more practical and efficient than inductive theorem proving in non-parameterized specifications. Moreover, SPIKE offers facilities to check and complete definitions.

[1]  Martin Wirsing,et al.  Algebraic Specification , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[2]  David R. Musser,et al.  On proving inductive properties of abstract data types , 1980, POPL '80.

[3]  Hélène Kirchner,et al.  Proofs in Parameterized Specification , 1991, RTA.

[4]  Uday S. Reddy,et al.  Term Rewriting Induction , 1990, CADE.

[5]  Deepak Kapur,et al.  A Mechanizable Induction Principle for Equational Specifications , 1988, CADE.

[6]  H. Comon Sufficient Completness, Term Rewriting Systems and Anti-Unification , 1986 .

[7]  Peter Padawitz,et al.  Parameter-Preserving Data Type Specifications , 1987, J. Comput. Syst. Sci..

[8]  Emmanuel Kounalis,et al.  Completeness in Data Type Specifications , 1985, European Conference on Computer Algebra.

[9]  Harald Ganzinger Ground Term Confluence in Parametric Conditional Equational Specifications , 1987, STACS.

[10]  Robert S. Boyer,et al.  Computational Logic , 1990, ESPRIT Basic Research Series.

[11]  AZEDDINE LAZREK,et al.  Tools for Proving Inductive Equalities, Relative Completeness, and omega-Completeness , 1990, Inf. Comput..

[12]  Peter Padawitz,et al.  Towards a Proof Theory of Parameterized Specifications , 1984, Semantics of Data Types.

[13]  Adel Bouhoula Parameterized conditional specifications : sufficient completeness and implicit induction , 1993 .

[14]  Jean-Pierre Jouannaud,et al.  Proofs by induction in equational theories without constructors , 1985, Bull. EATCS.

[15]  Adel Bouhoula SPIKE: a System for Sufficient Completeness and Parameterized Inductive Proofs , 1994, CADE.

[16]  Michaël Rusinowitch,et al.  Mechanizing inductive reasoning , 1990, Bull. EATCS.

[17]  Jean-Pierre Jouannaud,et al.  Rewrite Systems , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[18]  Adel Bouhoula,et al.  Preuves automatiques par récurrence dans les théories conditionnelles , 1994 .

[19]  Nachum Dershowitz,et al.  Termination of Rewriting , 1987, J. Symb. Comput..

[20]  Fernando Orejas,et al.  Parameterized Horn Clause Specifications: Proof Theory and Correctness , 1987, TAPSOFT, Vol.1.

[21]  Leo Bachmair,et al.  Proof by consistency in equational theories , 1988, [1988] Proceedings. Third Annual Information Symposium on Logic in Computer Science.

[22]  Gérard P. Huet,et al.  Proofs by induction in equational theories with constructors , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[23]  Michaël Rusinowitch,et al.  Automated Mathematical Induction , 1995, J. Log. Comput..

[24]  Hartmut Ehrig,et al.  Equations and initial semantics , 1985 .

[25]  Hartmut Ehrig,et al.  Fundamentals of Algebraic Specification 1: Equations and Initial Semantics , 1985 .

[26]  Hartmut Ehrig,et al.  Fundamentals of Algebraic Specification 1 , 1985, EATCS Monographs on Theoretical Computer Science.