Convergence analysis of a fully discrete finite difference scheme for the Cahn-Hilliard-Hele-Shaw equation

We present an error analysis for an unconditionally energy stable, fully discrete finite difference scheme for the Cahn-Hilliard-Hele-Shaw equa- tion, a modified Cahn-Hilliard equation coupled with the Darcy flow law. The scheme, proposed by S. M. Wise, is based on the idea of convex splitting. In this paper, we rigorously prove first order convergence in time and second or- der convergence in space. Instead of the (discrete)L ∞ (0,T;L 2 )∩L 2 (0,T;H 2 h ) error estimate, which would represent the typical approach, we provide a dis- creteL ∞ (0,T;H 1 )∩L 2 (0,T;H 3 h )e rror estimate for the phase variable, which allows us to treat the nonlinear convection term in a straightforward way. Our convergence is unconditionalin the sense that the time stepsis in no way constrained by the mesh spacingh .T his is accomplished with the help of anL 2 (0,T;H 3 h ) bound of the numerical approximation of the phase variable. To facilitate both the stability and convergence analyses, we establish a finite difference analog of a Gagliardo-Nirenberg type inequality.

[1]  Charles M. Elliott,et al.  Error estimates with smooth and nonsmooth data for a finite element method for the Cahn-Hilliard equation , 1992 .

[2]  J. Goodman,et al.  Modeling pinchoff and reconnection in a Hele-Shaw cell. I. The models and their calibration , 2002 .

[3]  Robert Nürnberg,et al.  Adaptive finite element methods for Cahn-Hilliard equations , 2008 .

[4]  Cheng Wang,et al.  A Linear Energy Stable Scheme for a Thin Film Model Without Slope Selection , 2012, J. Sci. Comput..

[5]  D. M. Anderson,et al.  DIFFUSE-INTERFACE METHODS IN FLUID MECHANICS , 1997 .

[6]  Yinnian He,et al.  Stability and convergence of the spectral Galerkin method for the Cahn‐Hilliard equation , 2008 .

[7]  Xiaoming Wang,et al.  Long Time Stability of a Classical Efficient Scheme for Two-dimensional Navier-Stokes Equations , 2011, SIAM J. Numer. Anal..

[8]  Cheng Wang,et al.  An Energy-Stable and Convergent Finite-Difference Scheme for the Phase Field Crystal Equation , 2009, SIAM J. Numer. Anal..

[9]  E Weinan,et al.  Projection method III: Spatial discretization on the staggered grid , 2002, Math. Comput..

[10]  Andreas Prohl,et al.  Error analysis of a mixed finite element method for the Cahn-Hilliard equation , 2004, Numerische Mathematik.

[11]  Xinfu Chen,et al.  Spectrum for the allen-chan, chan-hillard, and phase-field equations for generic interfaces , 1994 .

[12]  Li-ping He,et al.  Error Estimation of a Class of Stable Spectral Approximation to the Cahn-Hilliard Equation , 2009, J. Sci. Comput..

[13]  John W. Barrett,et al.  An optimal error bound for a finite element approximation of a model for phase separation of a multi-component alloy with non-smooth free energy , 1999 .

[14]  Shinozaki,et al.  Spinodal decomposition in a Hele-Shaw cell. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[15]  Steven M. Wise,et al.  Unconditionally stable schemes for equations of thin film epitaxy , 2010 .

[16]  D. J. Eyre Unconditionally Gradient Stable Time Marching the Cahn-Hilliard Equation , 1998 .

[17]  Xiaobing Feng,et al.  Fully discrete dynamic mesh discontinuous Galerkin methods for the Cahn-Hilliard equation of phase transition , 2007, Math. Comput..

[18]  Yinnian He,et al.  Analysis of finite element approximations of a phase field model for two-phase fluids , 2006, Math. Comput..

[19]  F. Harlow,et al.  Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .

[20]  Jonathan Goodman,et al.  Modeling pinchoff and reconnection in a Hele-Shaw cell. II. Analysis and simulation in the nonlinear regime , 2002 .

[21]  S. M. Wise,et al.  Unconditionally Stable Finite Difference, Nonlinear Multigrid Simulation of the Cahn-Hilliard-Hele-Shaw System of Equations , 2010, J. Sci. Comput..

[22]  Charles M. Elliott,et al.  CONVERGENCE OF NUMERICAL SOLUTIONS TO THE ALLEN-CAHN EQUATION , 1998 .

[23]  Peter W. Bates,et al.  Convergence of the Cahn-Hilliard equation to the Hele-Shaw model , 1994 .

[24]  R. Nicolaides,et al.  Numerical analysis of a continuum model of phase transition , 1991 .

[25]  Cheng Wang,et al.  A Linear Iteration Algorithm for a Second-Order Energy Stable Scheme for a Thin Film Model Without Slope Selection , 2014, J. Sci. Comput..

[26]  Steven M. Wise,et al.  Convergence Analysis of a Second Order Convex Splitting Scheme for the Modified Phase Field Crystal Equation , 2012, SIAM J. Numer. Anal..

[27]  C. M. Elliott,et al.  A nonconforming finite-element method for the two-dimensional Cahn-Hilliard equation , 1989 .

[28]  Chen Xinfu,et al.  Convergence of numerical solutions , 1998 .

[29]  Xiaobing Feng,et al.  Fully Discrete Finite Element Approximations of the Navier-Stokes-Cahn-Hilliard Diffuse Interface Model for Two-Phase Fluid Flows , 2006, SIAM J. Numer. Anal..

[30]  Steven M. Wise,et al.  Analysis of a Darcy-Cahn-Hilliard Diffuse Interface Model for the Hele-Shaw Flow and Its Fully Discrete Finite Element Approximation , 2011, SIAM J. Numer. Anal..

[31]  Steven M. Wise,et al.  Analysis of a Mixed Finite Element Method for a Cahn-Hilliard-Darcy-Stokes System , 2013, SIAM J. Numer. Anal..

[32]  Xinfu Chen,et al.  Global asymptotic limit of solutions of the Cahn-Hilliard equation , 1996 .

[33]  Robert Nürnberg,et al.  A posteriori estimates for the Cahn-Hilliard equation with obstacle free energy , 2009 .

[34]  Khaled Omrani,et al.  Finite difference approximate solutions for the Cahn‐Hilliard equation , 2007 .

[35]  Zhi-zhong Sun,et al.  A second-order accurate linearized difference scheme for the two-dimensional Cahn-Hilliard equation , 1995 .

[36]  Steven M. Wise,et al.  An Energy Stable and Convergent Finite-Difference Scheme for the Modified Phase Field Crystal Equation , 2011, SIAM J. Numer. Anal..

[37]  G. Burton Sobolev Spaces , 2013 .

[38]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy and Free Energy of a Nonuniform System. III. Nucleation in a Two‐Component Incompressible Fluid , 2013 .

[39]  Haijun Wu,et al.  A POSTERIORI ERROR ESTIMATES FOR FINITE ELEMENT APPROXIMATIONS OF THE CAHN-HILLIARD EQUATION AND THE HELE-SHAW FLOW * , 2007, 0708.2116.

[40]  Zhifei Zhang,et al.  Well-posedness of the Hele–Shaw–Cahn–Hilliard system , 2010, 1012.2944.

[41]  Charles M. Elliott,et al.  A second order splitting method for the Cahn-Hilliard equation , 1989 .

[42]  Zhizhang Chen Unconditionally stable finite-difference time-domain methods and their applications , 2004, Proceedings. ICCEA 2004. 2004 3rd International Conference on Computational Electromagnetics and Its Applications, 2004..

[43]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[44]  Giorgio Fusco,et al.  The spectrum of the Cahn-Hilliard operator for generic interface in higher space dimensions , 1993 .

[45]  Jie Shen,et al.  Second-order Convex Splitting Schemes for Gradient Flows with Ehrlich-Schwoebel Type Energy: Application to Thin Film Epitaxy , 2012, SIAM J. Numer. Anal..

[46]  Hao Wu,et al.  Long-time behavior for the Hele-Shaw-Cahn-Hilliard system , 2012, Asymptot. Anal..

[47]  Xiaofeng Yang,et al.  Numerical approximations of Allen-Cahn and Cahn-Hilliard equations , 2010 .

[48]  Shouhong Wang,et al.  Surface Pressure Poisson Equation Formulation of the Primitive Equations: Numerical Schemes , 2003, SIAM J. Numer. Anal..

[49]  Ohannes A. Karakashian,et al.  On a higher order accurate fully discrete Galerkin approximation to the Navier-Stokes equations , 1982 .

[50]  Cheng Wang,et al.  Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation , 2009, J. Comput. Phys..

[51]  C. M. Elliott,et al.  Numerical Studies of the Cahn-Hilliard Equation for Phase Separation , 1987 .