Calix[n]imidazolium as a new class of positively charged homo-calix compounds

Macrocycles based on neutral calixarenes and calixpyrroles have been extensively explored for ion binding, molecular assembly and related applications. Given that only these two types of calix compounds and their analogs are available, the introduction of new forms of widely usable calix macrocycles is an outstanding challenge. Here we report the quadruply/quintuply charged imidazole-based homo-calix compounds, calix[4/5]imidazolium. The noncovalent (C-H)+/π+-anion interactions of the imidazolium rings with anions inside and outside the cone are the stabilizing factors for crystal packing, resulting in self-assembled arrays of cone-shaped calix-imidazolium molecules. Calix[4]imidazolium senses fluoride selectively even in aqueous solutions. Calix[5]imidazolium recognizes neutral fullerenes through π+–π interactions and makes them soluble in water, which could be useful in fullerene chemistry. Not only derivatization and ring expansion of calix[n]imidazolium, but also their utilization in ionic liquids, carbene chemistry and nanographite/graphene exfoliation could be exploited.

[1]  P. Beer,et al.  Molecular recognition of anions by synthetic receptors. , 1997, Current opinion in chemical biology.

[2]  K. Rissanen,et al.  Recognition and sensing of fluoride anion. , 2009, Chemical communications.

[3]  Wallace W. H. Wong,et al.  Tetrakis(imidazolium) macrocyclic receptors for anion binding. , 2005, Organic & biomolecular chemistry.

[4]  T. Schiestel,et al.  Host-guest supramolecular chemistry. 34. The incremental approach to noncovalent interactions: coulomb and van der Waals effects in organic ion pairs , 1992 .

[5]  Kiyoshi Sato,et al.  A new tripodal anion receptor with CH···X− hydrogen bonding , 1999 .

[6]  P. Beer,et al.  Imidazolium functionalised acyclic ruthenium(II) bipyridyl receptors for anion recognition and luminescent sensing , 2005 .

[7]  S. Baldelli,et al.  Surface structure at the ionic liquid-electrified metal interface. , 2008, Accounts of chemical research.

[8]  M. Boiocchi,et al.  A metal-based trisimidazolium cage that provides six C-H hydrogen-bond-donor fragments and includes anions. , 2006, Angewandte Chemie.

[9]  V. Lynch,et al.  Crown-6-calix[4]arene-capped calix[4]pyrrole: an ion-pair receptor for solvent-separated CsF ions. , 2008, Journal of the American Chemical Society.

[10]  J. Rebek,et al.  Synthesis and assembly of self-complementary calix[4]arenes. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Juyoung Yoon,et al.  Imidazolium receptors for the recognition of anions. , 2006, Chemical Society reviews.

[12]  Kwang S. Kim,et al.  Ultrathin Single-Crystalline Silver Nanowire Arrays Formed in an Ambient Solution Phase , 2001, Science.

[13]  R. Crabtree,et al.  An N-heterocyclic carbene/iridium hydride complex from the oxidative addition of a ferrocenyl-bisimidazolium salt: implications for synthesis. , 2005, Angewandte Chemie.

[14]  Kwang Soo Kim,et al.  Self-assembled arrays of organic nanotubes with infinitely long one-dimensional H-bond chains. , 2001, Journal of the American Chemical Society.

[15]  Jean-Marie Lehn,et al.  Supramolecular Chemistry—Scope and Perspectives Molecules, Supermolecules, and Molecular Devices (Nobel Lecture) , 1988 .

[16]  B. Moyer,et al.  Calix[4]pyrrole: a new ion-pair receptor as demonstrated by liquid-liquid extraction. , 2008, Journal of the American Chemical Society.

[17]  P. Arnold,et al.  Abnormal N-heterocyclic carbenes , 2007 .

[18]  K. Raghavan,et al.  A new environmentally friendly method for the synthesis of calix(4)pyrroles over molecular sieve catalysts , 2005 .

[19]  A. J. Blake,et al.  Polyamine-based anion receptors: extraction and structural studies , 2006 .

[20]  Md. Alamgir Hossain,et al.  Enhanced anion exchange for selective sulfate extraction: overcoming the Hofmeister bias. , 2008, Journal of the American Chemical Society.

[21]  L. Pérez-García,et al.  Quantitative evaluation of the chloride template effect in the formation of dicationic [1(4)]imidazoliophanes. , 2002, The Journal of organic chemistry.

[22]  C. Tessier,et al.  Synthesis and structural characterization of a silver complex of a mixed-donor N-heterocyclic carbene linked cyclophane. , 2001, Chemical communications.

[23]  Kwang Soo Kim,et al.  Fluorescent GTP-sensing in aqueous solution of physiological pH. , 2004, Journal of the American Chemical Society.

[24]  L. Delmau,et al.  A calix[4]arene strapped calix[4]pyrrole: an ion-pair receptor displaying three different cesium cation recognition modes. , 2010, Journal of the American Chemical Society.

[25]  F. Hahn,et al.  Heterocyclic carbenes: synthesis and coordination chemistry. , 2008, Angewandte Chemie.

[26]  Kwang S. Kim,et al.  Tripodal nitro-imidazolium receptor for anion binding driven by (C-H)+- - -X- hydrogen bonds. , 2002, Organic letters.

[27]  Philip A. Gale,et al.  Calix[4]pyrroles:  Old Yet New Anion-Binding Agents , 1996 .

[28]  Jeffery T. Davis,et al.  Ion channel formation from a calix[4]arene amide that binds HCl. , 2002, Journal of the American Chemical Society.

[29]  Jurriaan Huskens,et al.  Complete asymmetric induction of supramolecular chirality in a hydrogen-bonded assembly , 1999, Nature.

[30]  Kwang S Kim,et al.  A calix[4]imidazolium[2]pyridine as an anion receptor. , 2005, Angewandte Chemie.

[31]  Teresa Blasco Máñez a structural perspective, , 2011 .

[32]  Jonathan L. Sessler,et al.  A 'Texas-sized' molecular box that forms an anion-induced supramolecular necklace. , 2010, Nature chemistry.

[33]  Jurriaan Huskens,et al.  Complete asymmetric chirality in a hydrogen-bonded assembly , 1999 .

[34]  B. Moyer,et al.  Octamethyl-octaundecylcyclo[8]pyrrole: a promising sulfate anion extractant. , 2007, Journal of the American Chemical Society.

[35]  F. Schmidtchen,et al.  Artificial Organic Host Molecules for Anions. , 1997, Chemical reviews.

[36]  A. Slawin,et al.  Simple and versatile synthesis of copper and silver N-heterocyclic carbene complexes in water or organic solvents. , 2010, Dalton transactions.

[37]  A. Pádua,et al.  Molecular solutes in ionic liquids: a structural perspective. , 2007, Accounts of chemical research.

[38]  Jonathan L. Sessler,et al.  Naked-Eye Detection of Anions in Dichloromethane: Colorimetric Anion Sensors Based on Calix[4]pyrrole , 2000 .

[39]  L. Pérez-García,et al.  Anion Template-Directed Synthesis of Dicationic [14]Imidazoliophanes , 1999 .

[40]  Philip A. Gale,et al.  Calix[4]pyridine: a new arrival in the heterocalixarene family , 1998 .

[41]  P. Beer,et al.  A dual-functional tetrakis- imidazolium macrocycle for supramolecular assembly , 2011 .

[42]  J. Sessler,et al.  A pyrrolyl-based triazolophane: a macrocyclic receptor with CH and NH donor groups that exhibits a preference for pyrophosphate anions. , 2010, Journal of the American Chemical Society.

[43]  C. Cannon,et al.  The medicinal applications of imidazolium carbene-metal complexes. , 2009, Chemical reviews.

[44]  Philip Kim,et al.  Near-field focusing and magnification through self-assembled nanoscale spherical lenses , 2009, Nature.

[45]  Kevin M Smith,et al.  Synthesis and coordination chemistry , 2010 .

[46]  F. Sansone,et al.  Peptido- and glycocalixarenes: playing with hydrogen bonds around hydrophobic cavities. , 2003, Accounts of chemical research.

[47]  Dong Young Kim,et al.  Comprehensive Energy Analysis for Various Types of π-Interaction. , 2009, Journal of chemical theory and computation.

[48]  J. Harrowfield,et al.  Calixarenes in the nanoworld , 2007 .

[49]  A. Shivanyuk Nanoencapsulation of calix[4]arene inclusion complexes. , 2007, Journal of the American Chemical Society.

[50]  I. Ial,et al.  Nature Communications , 2010, Nature Cell Biology.

[51]  Jeffery T. Davis,et al.  Regulating supramolecular function in membranes: calixarenes that enable or inhibit transmembrane Cl- transport. , 2006, Angewandte Chemie.