Observations of in situ deep-sea marine bioluminescence with a high-speed, high-resolution sCMOS camera

Abstract Observing and measuring marine bioluminescence in situ presents unique challenges, characterized by the difficult task of approaching and imaging weakly illuminated bodies in a three-dimensional environment. To address this problem, a scientific complementary-metal-oxide-semiconductor (sCMOS) microscopy camera was outfitted for deep-sea imaging of marine bioluminescence. This system was deployed on multiple platforms (manned submersible, remotely operated vehicle, and towed body) in three oceanic regions (Western Tropical Pacific, Eastern Equatorial Pacific, and Northwestern Atlantic) to depths up to 2500 m. Using light stimulation, bioluminescent responses were recorded at high frame rates and in high resolution, offering unprecedented low-light imagery of deep-sea bioluminescence in situ . The kinematics of light production in several zooplankton groups was observed, and luminescent responses at different depths were quantified as intensity vs . time. These initial results signify a clear advancement in the bioluminescent imaging methods available for observation and experimentation in the deep-sea.

[1]  Wang Li,et al.  Low-light-level CMOS image sensor for digitally fused night vision systems , 2009, Defense + Commercial Sensing.

[2]  The First Genomic and Proteomic Characterization of a Deep-Sea Sulfate Reducer: Insights into the Piezophilic Lifestyle of Desulfovibrio piezophilus , 2013, PloS one.

[3]  M. Grober,et al.  TAXONOMIC CORRELATES OF BIOLUMINESCENCE AMONG APPENDICULARIANS (UROCHORDATA: LARVACEA) , 1985 .

[4]  E. Buskey,et al.  BEHAVIORAL RESPONSES OF OCEANIC ZOOPLANKTON TO SIMULATED BIOLUMINESCENCE , 1985 .

[5]  P. Wiebe,et al.  From the Hensen net toward four-dimensional biological oceanography , 2003 .

[6]  M. J. Cormier,et al.  Primary structure of the Aequorea victoria green-fluorescent protein. , 1992, Gene.

[7]  M. Youngbluth,et al.  Bioluminescence of sound-scattering layers in the Gulf of Maine , 1992 .

[8]  D. Bracher,et al.  Bioluminescence in the Monterey Submarine Canyon: image analysis of video recordings from a midwater submersible , 1989 .

[9]  R. March,et al.  Mechanical stimulation of bioluminescence in the deep Pacific Ocean , 1991 .

[10]  S. Johnsen,et al.  Light and vision in the deep-sea benthos: I. Bioluminescence at 500–1000 m depth in the Bahamian Islands , 2012, Journal of Experimental Biology.

[11]  William Beebe,et al.  Half Mile Down , 1936 .

[12]  M. Surette,et al.  Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: a new family of genes responsible for autoinducer production. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Scott M. Gallager,et al.  Distribution of plankton, particles, and hydrographic features across Georges Bank described using the Video Plankton Recorder , 2001 .

[14]  T. Sutton,et al.  Vertical ecology of the pelagic ocean: classical patterns and new perspectives. , 2013, Journal of fish biology.

[15]  A. Heijboer,et al.  SEARCHES FOR POINT-LIKE AND EXTENDED NEUTRINO SOURCES CLOSE TO THE GALACTIC CENTER USING THE ANTARES NEUTRINO TELESCOPE , 2014, 1402.6182.

[16]  Mark A. Moline,et al.  Bioluminescence to reveal structure and interaction of coastal planktonic communities , 2009 .

[17]  I. Priede,et al.  Near seafloor bioluminescence, macrozooplankton and macroparticles at the Mid-Atlantic Ridge , 2015 .

[18]  D. Sameoto Influence of the biological and physical environment on the vertical distribution of mesozooplankton and micronekton in the eastern tropical Pacific , 1986 .

[19]  E. M. Kampa,et al.  RECORDS OF BIOLUMINESCENCE IN THE OCEAN , 1957 .

[20]  M. J. Cormier,et al.  Cloning and expression of the cDNA coding for aequorin, a bioluminescent calcium-binding protein. , 1985, Biochemical and biophysical research communications.

[21]  Sönke Johnsen,et al.  3D spatial point patterns of bioluminescent plankton: a map of the ‘minefield’ , 2000 .

[22]  M. Moline,et al.  A multi‐platform bathyphotometer for fine‐scale, coastal bioluminescence research , 2005 .

[23]  G. Freeman Localization of bioluminescence in the siphonophore Nanomia cara , 1987 .

[24]  H. Hirche,et al.  Zooplankton distribution across the Lomonosov Ridge, Arctic Ocean: species inventory, biomass and vertical structure , 2000 .

[25]  J. Berge,et al.  Glowing in the dark: discriminating patterns of bioluminescence from different taxa during the Arctic polar night , 2014, Polar Biology.

[26]  Karl Banse,et al.  On the vertical distribution of Zooplankton in the sea , 1964 .

[27]  O. Shimomura,et al.  Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. , 1962, Journal of cellular and comparative physiology.

[28]  R. Kay,et al.  Experimental Studies of Plankton Luminescence , 1964, Journal of the Marine Biological Association of the United Kingdom.

[29]  E. Widder Bioluminescence and the Pelagic Visual Environment , 2002 .

[30]  Jean-René Martin In Vivo Brain Imaging: Fluorescence or Bioluminescence, Which to Choose? , 2008, Journal of neurogenetics.

[31]  B. Robison Bioluminescence in the benthopelagic holothurian Enypniastes eximia , 1992, Journal of the Marine Biological Association of the United Kingdom.

[32]  D. Lapota,et al.  Bioluminescence displays induced by pulsed light , 1986 .

[33]  H. Weikert The Vertical Distribution of Zooplankton in Relation to Habitat Zones in the Area of the Atlantis II Deep, Central Red Sea , 1982 .

[34]  P. Herring,et al.  Imidazolopyrazine bioluminescence in copepods and other marine organisms , 1990 .

[35]  P. Herring,et al.  Bioluminescence of deep-sea coronate medusae (Cnidaria: Scyphozoa) , 2004 .

[36]  PULSED LIGHT STIMULATION OF MARINE BIOLUMINESCENCE IN SITU , 1967 .

[37]  K. Benoit‐Bird,et al.  A Critical Time Window for Organismal Interactions in a Pelagic Ecosystem , 2014, PloS one.

[38]  P. Bagley,et al.  Deep-sea pelagic bioluminescence over the Mid-Atlantic Ridge , 2008 .

[39]  C. Contag,et al.  Advances in in vivo bioluminescence imaging of gene expression. , 2002, Annual review of biomedical engineering.

[40]  J. Ringelberg Diel Vertical Migration of Zooplankton in Lakes and Oceans: causal explanations and adaptive significances , 2009 .

[41]  M. Moline,et al.  Bioluminescence in the sea. , 2010, Annual review of marine science.

[42]  W. D. Mcelroy,et al.  Crystalline firefly luciferase. , 1956, Biochimica et biophysica acta.

[43]  M. Anctil PHYSIOLOGICAL CONTROL OF BIOLUMINESCENCE , 1979 .

[44]  S. Zeng,et al.  Localization-based super-resolution microscopy with an sCMOS camera part II: experimental methodology for comparing sCMOS with EMCCD cameras. , 2012, Optics express.

[45]  S. Johnsen,et al.  Thin layers of bioluminescent copepods found at density discontinuities in the water column , 1999 .

[46]  Alain F. Zuur,et al.  Seasonal development of a deep pelagic bioluminescent layer in the temperate NE Atlantic Ocean , 2007 .

[47]  J. Case,et al.  Bioluminescence spectra of shallow and deep-sea gelatinous zooplankton: ctenophores, medusae and siphonophores , 1999 .

[48]  Hope T. Beier,et al.  Experimental Comparison of the High-Speed Imaging Performance of an EM-CCD and sCMOS Camera in a Dynamic Live-Cell Imaging Test Case , 2014, PloS one.

[49]  J. R. Hubbard,et al.  Background light in potential sites for the ANTARES undersea neutrino telescope , 2000 .

[50]  A. Heijboer,et al.  Deep-Sea Bioluminescence Blooms after Dense Water Formation at the Ocean Surface , 2013, PloS one.

[51]  J. Ringelberg Diel Vertical Migration of Zooplankton in Lakes and Oceans , 2010 .

[52]  J. Mallefet,et al.  Physiological control of bioluminescence in a deep-sea planktonic worm, Tomopteris helgolandica , 2013, Journal of Experimental Biology.

[53]  P. Bagley,et al.  Naturally occurring bioluminescence on the deep-sea floor , 2011 .

[54]  Alain F. Zuur,et al.  Factors influencing the abundance of deep pelagic bioluminescent zooplankton in the Mediterranean Sea , 2010 .

[55]  David M. Karl,et al.  Bioluminescence profile in the deep Pacific Ocean , 1987 .

[56]  Steven H. D. Haddock,et al.  Using red light for in situ observations of deep-sea fishes , 2005 .

[57]  A. Tsuda,et al.  Diel vertical migration of the tunicate Salpa thompsoni in the Southern Ocean during summer , 2001, Polar Biology.

[58]  Stephen M. Rock,et al.  A pilot-aid for ROV based tracking of gelatinous animals in the midwater , 2001, MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference Proceedings (IEEE Cat. No.01CH37295).

[59]  Agnes Dominjon,et al.  An ebCMOS camera system for marine bioluminescence observation: The LuSEApher prototype , 2012 .

[60]  P. L. Gal,et al.  Dinoflagellate bioluminescence in response to mechanical stimuli in water flows , 2005 .

[61]  Thomas J. Webb,et al.  Biodiversity's Big Wet Secret: The Global Distribution of Marine Biological Records Reveals Chronic Under-Exploration of the Deep Pelagic Ocean , 2010, PloS one.

[62]  J. Case,et al.  The luminescence of lanternfish (myctophidae): Spontaneous activity and responses to mechanical, electrical, and chemical stimulation , 1974 .

[63]  D. Holliday,et al.  A shallow scattering layer: High‐resolution acoustic analysis of nocturnal vertical migration from the seabed , 2003 .

[64]  B. Bassler,et al.  Intercellular signalling in Vibrio harveyi: sequence and function of genes regulating expression of luminescence , 1993, Molecular microbiology.

[65]  Imants G. Priede,et al.  Bioluminescence in the deep sea: free-fall lander observations in the Atlantic Ocean off Cape Verde , 2006 .

[66]  M. Latz,et al.  Luminescent response of the red tide dinoflagellate Lingulodinium polyedrum to laminar and turbulent flow , 1999 .

[67]  Half mile down / by William Beebe. , 1934 .

[68]  E. Shroyer,et al.  A critical scale in plankton aggregations across coastal ecosystems , 2013 .

[69]  V. Sperandio,et al.  Quorum sensing in Escherichia coli and Salmonella. , 2006, International journal of medical microbiology : IJMM.