Electrode-electrolyte interface in Li-ion batteries: current understanding and new insights.

Understanding reactions at the electrode/electrolyte interface (EEI) is essential to developing strategies to enhance cycle life and safety of lithium batteries. Despite research in the past four decades, there is still limited understanding by what means different components are formed at the EEI and how they influence EEI layer properties. We review findings used to establish the well-known mosaic structure model for the EEI (often referred to as solid electrolyte interphase or SEI) on negative electrodes including lithium, graphite, tin, and silicon. Much less understanding exists for EEI layers for positive electrodes. High-capacity Li-rich layered oxides yLi2-xMnO3·(1-y)Li1-xMO2, which can generate highly reactive species toward the electrolyte via oxygen anion redox, highlight the critical need to understand reactions with the electrolyte and EEI layers for advanced positive electrodes. Recent advances in in situ characterization of well-defined electrode surfaces can provide mechanistic insights and strategies to tailor EEI layer composition and properties.

[1]  D. Guyomard,et al.  Contribution of the oxygen extracted from overlithiated layered oxides at high potential to the formation of the interphase , 2015 .

[2]  K. Abraham,et al.  A Search for the Optimum Lithium Rich Layered Metal Oxide Cathode Material for Li-Ion Batteries , 2015, Journal of the Electrochemical Society.

[3]  W. Jaegermann,et al.  Electron Spectroscopy Study of Li[Ni,Co,Mn]O2/Electrolyte Interface: Electronic Structure, Interface Composition, and Device Implications , 2015 .

[4]  Chaodi Xu,et al.  A high pressure x-ray photoelectron spectroscopy experimental method for characterization of solid-liquid interfaces demonstrated with a Li-ion battery system. , 2015, The Review of scientific instruments.

[5]  K. Komvopoulos,et al.  A catalytic path for electrolyte reduction in lithium-ion cells revealed by in situ attenuated total reflection-Fourier transform infrared spectroscopy. , 2015, Journal of the American Chemical Society.

[6]  O. Borodin,et al.  High rate and stable cycling of lithium metal anode , 2015, Nature Communications.

[7]  E. Salager,et al.  Electron paramagnetic resonance imaging for real-time monitoring of Li-ion batteries , 2015, Nature Communications.

[8]  K Ramesha,et al.  Origin of voltage decay in high-capacity layered oxide electrodes. , 2015, Nature materials.

[9]  M. Winter,et al.  The Mechanism of SEI Formation on a Single Crystal Si(100) Electrode , 2015 .

[10]  Kishan Dholakia,et al.  The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li-O2 batteries. , 2014, Nature chemistry.

[11]  David L Wood,et al.  In situ determination of the liquid/solid interface thickness and composition for the Li ion cathode LiMn(1.5)Ni(0.5)O4. , 2014, ACS applied materials & interfaces.

[12]  R. Kostecki,et al.  Electrochemical reactivity of pyrolytic carbon film electrodes in organic carbonate electrolytes , 2014 .

[13]  Erik J. Berg,et al.  Differential Electrochemical Mass Spectrometry Study of the Interface of xLi2MnO3·(1–x)LiMO2 (M = Ni, Co, and Mn) Material as a Positive Electrode in Li-Ion Batteries , 2014 .

[14]  Heinz Pitsch,et al.  Solvent Degradation in Nonaqueous Li-O2 Batteries: Oxidative Stability versus H-Abstraction. , 2014, The journal of physical chemistry letters.

[15]  W. Jaegermann,et al.  Nonrigid Band Behavior of the Electronic Structure of LiCoO2 Thin Film during Electrochemical Li Deintercalation , 2014 .

[16]  Eric D. Rus,et al.  CO₂ and O₂ evolution at high voltage cathode materials of Li-ion batteries: a differential electrochemical mass spectrometry study. , 2014, Analytical chemistry.

[17]  Robert Kostecki,et al.  Distinct Solid‐Electrolyte‐Interphases on Sn (100) and (001) Electrodes Studied by Soft X‐Ray Spectroscopy , 2014 .

[18]  David G. Kwabi,et al.  Materials challenges in rechargeable lithium-air batteries , 2014 .

[19]  Hajime Arai,et al.  Improved Cyclic Performance of Lithium-Ion Batteries: An Investigation of Cathode/Electrolyte Interface via In Situ Total-Reflection Fluorescence X-ray Absorption Spectroscopy , 2014 .

[20]  R. Kostecki,et al.  SEI Formation on Single Crystal Si Electrodes in Organic Carbonate Electrolytes , 2014 .

[21]  Feng Lin,et al.  Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries , 2014, Nature Communications.

[22]  Yuki Yamada,et al.  Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries. , 2014, Journal of the American Chemical Society.

[23]  C. Delmas,et al.  Operando X-ray Absorption Study of the Redox Processes Involved upon Cycling of the Li-Rich Layered Oxide Li1.20Mn0.54Co0.13Ni0.13O2 in Li Ion Batteries , 2014 .

[24]  Hyun-Wook Lee,et al.  A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. , 2014, Nature nanotechnology.

[25]  G. Veith,et al.  Direct measurement of the chemical reactivity of silicon electrodes with LiPF6-based battery electrolytes. , 2014, Chemical communications.

[26]  M. Cassir,et al.  Insight into the Solid Electrolyte Interphase on Si Nanowires in Lithium-Ion Battery: Chemical and Morphological Modifications upon Cycling , 2014 .

[27]  Kang Xu,et al.  In situ and quantitative characterization of solid electrolyte interphases. , 2014, Nano letters.

[28]  Kyung Yoon Chung,et al.  Investigation of Changes in the Surface Structure of LixNi0.8Co0.15Al0.05O2 Cathode Materials Induced by the Initial Charge , 2014 .

[29]  Peng Lu,et al.  Chemistry, Impedance, and Morphology Evolution in Solid Electrolyte Interphase Films during Formation in Lithium Ion Batteries , 2014 .

[30]  Haegyeom Kim,et al.  Understanding the Degradation Mechanisms of LiNi0.5Co0.2Mn0.3O2 Cathode Material in Lithium Ion Batteries , 2014 .

[31]  P. Kaghazchi Phase-sensitivity of Li intercalation into Sn , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[32]  D. Abraham,et al.  Reduction of Carbonate Electrolytes and the Formation of Solid-Electrolyte Interface (SEI) in Lithium-Ion Batteries. 2. Radiolytically Induced Polymerization of Ethylene Carbonate , 2013 .

[33]  Daniel P. Abraham,et al.  Reduction of Carbonate Electrolytes and the Formation of Solid-Electrolyte Interface (SEI) in Lithium-Ion Batteries. 1. Spectroscopic Observations of Radical Intermediates Generated in One-Electron Reduction of Carbonates , 2013 .

[34]  K Ramesha,et al.  Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. , 2013, Nature materials.

[35]  K. Edström,et al.  Consequences of air exposure on the lithiated graphite SEI , 2013 .

[36]  M. Chi,et al.  Probing the electrode/electrolyte interface in the lithium excess layered oxide Li1.2Ni0.2Mn0.6O2. , 2013, Physical chemistry chemical physics : PCCP.

[37]  Kristina Edström,et al.  Comparing anode and cathode electrode/electrolyte interface composition and morphology using soft and hard X-ray photoelectron spectroscopy , 2013 .

[38]  O. Borodin,et al.  Oxidative Stability and Initial Decomposition Reactions of Carbonate, Sulfone, and Alkyl Phosphate-Based Electrolytes , 2013 .

[39]  Kevin G. Gallagher,et al.  Examining Hysteresis in Composite xLi2MnO3·(1−x)LiMO2 Cathode Structures , 2013 .

[40]  Marie-Liesse Doublet,et al.  High Performance Li2Ru1–yMnyO3 (0.2 ≤ y ≤ 0.8) Cathode Materials for Rechargeable Lithium-Ion Batteries: Their Understanding , 2013 .

[41]  K. Leung Two-electron reduction of ethylene carbonate: A quantum chemistry re-examination of mechanisms , 2013, 1307.3165.

[42]  Yang Shao-Horn,et al.  Lithium–oxygen batteries: bridging mechanistic understanding and battery performance , 2013 .

[43]  V. Bryantsev Predicting the stability of aprotic solvents in Li-air batteries: pKa calculations of aliphatic C–H acids in dimethyl sulfoxide , 2013 .

[44]  Michel Armand,et al.  A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries , 2013, Nature Communications.

[45]  K. Edström,et al.  Role of the LiPF6 Salt for the Long-Term Stability of Silicon Electrodes in Li-Ion Batteries : A Photoelectron Spectroscopy Study , 2013 .

[46]  Mengyun Nie,et al.  Lithium Ion Battery Graphite Solid Electrolyte Interphase Revealed by Microscopy and Spectroscopy , 2013 .

[47]  BRENT C. MELOT,et al.  Design and preparation of materials for advanced electrochemical storage. , 2013, Accounts of chemical research.

[48]  C. Delmas,et al.  Reversible Oxygen Participation to the Redox Processes Revealed for Li1.20Mn0.54Co0.13Ni0.13O2 , 2013 .

[49]  Doron Aurbach,et al.  Amorphous Columnar Silicon Anodes for Advanced High Voltage Lithium Ion Full Cells: Dominant Factors Governing Cycling Performance , 2013 .

[50]  M. Chi,et al.  Probing the electrode / electrolyte interface in the lithium excess layered oxide Li 1 . 2 Ni 0 . 2 Mn 0 . 6 O 2 † , 2013 .

[51]  K. Leung Electronic Structure Modeling of Electrochemical Reactions at Electrode/Electrolyte Interfaces in Lithium Ion Batteries , 2012, 1304.5976.

[52]  Hajime Arai,et al.  First in situ observation of the LiCoO2 electrode/electrolyte interface by total-reflection X-ray absorption spectroscopy. , 2012, Angewandte Chemie.

[53]  Yang Shao-Horn,et al.  Chemical and Morphological Changes of Li–O2 Battery Electrodes upon Cycling , 2012 .

[54]  J. Colin,et al.  Evolutions of Li1.2Mn0.61Ni0.18Mg0.01O2 during the Initial Charge/Discharge Cycle Studied by Advanced Electron Microscopy , 2012 .

[55]  C. Wolverton,et al.  First principles simulations of the electrochemical lithiation and delithiation of faceted crystalline silicon. , 2012, Journal of the American Chemical Society.

[56]  D. Macdonald,et al.  Imaging crystal orientations in multicrystalline silicon wafers via photoluminescence , 2012 .

[57]  P. Bruce,et al.  A Reversible and Higher-Rate Li-O2 Battery , 2012, Science.

[58]  Mark C. Hersam,et al.  In Situ X-ray Study of the Solid Electrolyte Interphase (SEI) Formation on Graphene as a Model Li-ion Battery Anode , 2012 .

[59]  V. Bryantsev Calculation of solvation free energies of Li+ and O2− ions and neutral lithium–oxygen compounds in acetonitrile using mixed cluster/continuum models , 2012, Theoretical Chemistry Accounts.

[60]  K. Kang,et al.  Critical Role of Oxygen Evolved from Layered Li–Excess Metal Oxides in Lithium Rechargeable Batteries , 2012 .

[61]  F. Faglioni,et al.  Predicting autoxidation stability of ether- and amide-based electrolyte solvents for Li-air batteries. , 2012, The journal of physical chemistry. A.

[62]  C. Delmas,et al.  Li1.20Mn0.54Co0.13Ni0.13O2 with Different Particle Sizes as Attractive Positive Electrode Materials for Lithium-Ion Batteries: Insights into Their Structure , 2012 .

[63]  Jon P. Owejan,et al.  Solid Electrolyte Interphase in Li-Ion Batteries: Evolving Structures Measured In situ by Neutron Reflectometry , 2012 .

[64]  Hui Wu,et al.  A yolk-shell design for stabilized and scalable li-ion battery alloy anodes. , 2012, Nano letters.

[65]  Yi Cui,et al.  Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. , 2012, Nature nanotechnology.

[66]  Dmitry Bedrov,et al.  Reactions of singly-reduced ethylene carbonate in lithium battery electrolytes: a molecular dynamics simulation study using the ReaxFF. , 2012, The journal of physical chemistry. A.

[67]  Fredrik J. Lindgren,et al.  Nanosilicon Electrodes for Lithium-Ion Batteries: Interfacial Mechanisms Studied by Hard and Soft X-ray Photoelectron Spectroscopy , 2012 .

[68]  Gregory V. Chase,et al.  The Identification of Stable Solvents for Nonaqueous Rechargeable Li-Air Batteries , 2012 .

[69]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[70]  T. Abe,et al.  In Situ AFM Study of Surface Film Formation on the Edge Plane of HOPG for Lithium-Ion Batteries , 2011 .

[71]  O. Borodin,et al.  Density functional theory study of the role of anions on the oxidative decomposition reaction of propylene carbonate. , 2011, The journal of physical chemistry. A.

[72]  R. Kostecki,et al.  Interfacial processes at single-crystal β-Sn electrodes in organic carbonate electrolytes , 2011 .

[73]  Jasim Uddin,et al.  Predicting solvent stability in aprotic electrolyte Li-air batteries: nucleophilic substitution by the superoxide anion radical (O2(•-)). , 2011, The journal of physical chemistry. A.

[74]  Wanli Xu,et al.  Surface-modified silicon nanowire anodes for lithium-ion batteries , 2011 .

[75]  G. Yushin,et al.  A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries , 2011, Science.

[76]  Betar M. Gallant,et al.  All-carbon-nanofiber electrodes for high-energy rechargeable Li–O2 batteries , 2011 .

[77]  Yang Shao-Horn,et al.  The discharge rate capability of rechargeable Li–O2 batteries , 2011 .

[78]  P. Bruce,et al.  Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes. , 2011, Journal of the American Chemical Society.

[79]  Seung M. Oh,et al.  Passivating Ability of Surface Film Derived from Vinylene Carbonate on Tin Negative Electrode , 2011 .

[80]  Marshall C. Smart,et al.  13C Solid State NMR Suggests Unusual Breakdown Products in SEI Formation on Lithium Ion Electrodes , 2011 .

[81]  R M Shelby,et al.  Solvents' Critical Role in Nonaqueous Lithium-Oxygen Battery Electrochemistry. , 2011, The journal of physical chemistry letters.

[82]  Ji‐Guang Zhang,et al.  Investigation on the charging process of Li2O2-based air electrodes in Li–O2 batteries with organic carbonate electrolytes , 2011 .

[83]  Oleg Borodin,et al.  Quantum Chemistry Studies of the Oxidative Stability of Carbonate, Sulfone and Sulfonate-Based Electrolytes Doped with BF4 -, PF6 - Anions , 2011 .

[84]  Shinichi Komaba,et al.  Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo(1/3)Ni(1/3)Mn(1/3)O2. , 2011, Journal of the American Chemical Society.

[85]  Mario Blanco,et al.  Computational Study of the Mechanisms of Superoxide-Induced Decomposition of Organic Carbonate-Based Electrolytes , 2011 .

[86]  L. Nazar,et al.  Advances in Li–S batteries , 2010 .

[87]  Yuki Yamada,et al.  Role of edge orientation in kinetics of electrochemical intercalation of lithium-ion at graphite. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[88]  Hailong Chen,et al.  In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. , 2010, Nature materials.

[89]  Shuo Chen,et al.  Platinum-gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium-air batteries. , 2010, Journal of the American Chemical Society.

[90]  R. Dedryvère,et al.  Electrode/Electrolyte Interface Reactivity in High-Voltage Spinel LiMn1.6Ni0.4O4/Li4Ti5O12 Lithium-Ion Battery , 2010 .

[91]  Hubert A. Gasteiger,et al.  The Influence of Catalysts on Discharge and Charge Voltages of Rechargeable Li–Oxygen Batteries , 2010 .

[92]  J. Goodenough,et al.  Challenges for Rechargeable Li Batteries , 2010 .

[93]  S. Trussler,et al.  Precision Measurements of the Coulombic Efficiency of Lithium-Ion Batteries and of Electrode Materials for Lithium-Ion Batteries , 2010 .

[94]  Martin Winter,et al.  The Solid Electrolyte Interphase – The Most Important and the Least Understood Solid Electrolyte in Rechargeable Li Batteries , 2009 .

[95]  D. Guyomard,et al.  Silicon Composite Electrode with High Capacity and Long Cycle Life , 2009 .

[96]  J. Goodenough,et al.  Locating redox couples in the layered sulfides with application to Cu[Cr2]S4 , 2009 .

[97]  Y. Shao-horn,et al.  Probing the Origin of Enhanced Stability of AlPO4 Nanoparticle Coated LiCoO2 during Cycling to High Voltages: Combined XRD and XPS Studies , 2009 .

[98]  E. Peled,et al.  Artificial solid-electrolyte interphase (SEI) for improved cycleability and safety of lithium–ion cells for EV applications , 2009 .

[99]  Yuki Yamada,et al.  Kinetics of lithium ion transfer at the interface between graphite and liquid electrolytes: effects of solvent and surface film. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[100]  Hiroshi Nakamura,et al.  Electrochemical Activities in Li2MnO3 , 2009 .

[101]  Yi Cui,et al.  Surface Chemistry and Morphology of the Solid Electrolyte Interphase on Silicon Nanowire Lithium-ion Battery Anodes , 2009 .

[102]  Dominique Guyomard,et al.  Characterization of interphases appearing on LiNi0.5Mn0.5O2 using 7Li MAS NMR , 2009 .

[103]  Hung-Chun Wu,et al.  Study on Solid-Electrolyte-Interphase of Si and C-Coated Si Electrodes in Lithium Cells , 2009 .

[104]  Seung‐Wan Song,et al.  Surface layer formation on Sn anode: ATR FTIR spectroscopic characterization , 2009 .

[105]  Hung-Chun Wu,et al.  Enhanced high-temperature cycle performance of LiFePO4/carbon batteries by an ion-sieving metal coating on negative electrode , 2008 .

[106]  Alan C. West,et al.  Effect of Electrolyte Composition on Lithium Dendrite Growth , 2008 .

[107]  C. Delmas,et al.  On “Really” Stoichiometric LiCoO2 , 2008 .

[108]  Mo-hua Yang,et al.  Effects of TiO2 coating on high-temperature cycle performance of LiFePO4-based lithium-ion batteries , 2008 .

[109]  J. Goodenough,et al.  Lithium Insertion into Transition-Metal Monosulfides: Tuning the Position of the Metal 4s Band , 2008 .

[110]  Y. Shao-horn,et al.  Thermal Instability of Cycled Li x Ni 0.5 Mn 0.5 O 2 Electrodes: An in Situ Synchrotron X-ray Powder Diffraction Study , 2008 .

[111]  R. McCreery,et al.  Advanced carbon electrode materials for molecular electrochemistry. , 2008, Chemical reviews.

[112]  P. Bruce,et al.  Nanomaterials for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[113]  P. Novák,et al.  Direct evidence of oxygen evolution from Li1+x(Ni1/3Mn1/3Co1/3)1−xO2 at high potentials , 2008 .

[114]  M. Armand,et al.  Building better batteries , 2008, Nature.

[115]  C. Changa,et al.  Effects of TiO 2 coating on high-temperature cycle performance of LiFePO 4-based lithium-ion batteries , 2008 .

[116]  P. Biensan,et al.  Surface film formation on electrodes in a LiCoO2/graphite cell: A step by step XPS study , 2007 .

[117]  Rémi Dedryvère,et al.  XPS Study on Al2O3- and AlPO4-Coated LiCoO2 Cathode Material for High-Capacity Li Ion Batteries , 2007 .

[118]  Shuru Chen,et al.  Studies of the interfacial properties of an electroplated Sn thin film electrode/electrolyte using in situ MFTIRS and EQCM. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[119]  Junwei Jiang,et al.  The reactivity of delithiated Li(Ni1/3Co1/3Mn1/3)O2, Li(Ni0.8Co0.15Al0.05)O2 or LiCoO2 with non-aqueous electrolyte , 2007 .

[120]  John T. Vaughey,et al.  Li{sub2}MnO{sub3}-stabilized LiMO{sub2} (M=Mn, Ni, Co) electrodes for high energy lithium-ion batteries , 2007 .

[121]  T. Jow,et al.  Solvation sheath of Li+ in nonaqueous electrolytes and its implication of graphite/ electrolyte interface chemistry , 2007 .

[122]  Linda F. Nazar,et al.  Review on electrode–electrolyte solution interactions, related to cathode materials for Li-ion batteries , 2007 .

[123]  Nam-Soon Choi,et al.  Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode , 2006 .

[124]  Michael Holzapfel,et al.  Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. , 2006, Journal of the American Chemical Society.

[125]  Kang Xu,et al.  Syntheses and characterization of lithium alkyl mono- and dicarbonates as components of surface films in Li-ion batteries. , 2006, The journal of physical chemistry. B.

[126]  Kristina Edström,et al.  A new look at the solid electrolyte interphase on graphite anodes in Li-ion batteries , 2006 .

[127]  P. Johansson,et al.  Rational design of electrolyte components by ab initio calculations , 2006 .

[128]  Martin Winter,et al.  Electrochemical impedance spectroscopy study of the SEI formation on graphite and metal electrodes , 2006 .

[129]  D. Aurbach,et al.  Influence of the PVdF binder on the stability of LiCoO2 electrodes , 2005 .

[130]  M. Wohlfahrt‐Mehrens,et al.  Ageing mechanisms in lithium-ion batteries , 2005 .

[131]  M. Wagner,et al.  XRD evidence for the electrochemical formation of Li+(PC)yCn- in PC-based electrolytes , 2005 .

[132]  P. Bruce,et al.  Overcharging manganese oxides: Extracting lithium beyond Mn4+ , 2005 .

[133]  J. Tomasi,et al.  Quantum mechanical continuum solvation models. , 2005, Chemical reviews.

[134]  John T. Vaughey,et al.  Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries , 2005 .

[135]  Kang Xu,et al.  Lithium Ethylene Dicarbonate Identified as the Primary Product of Chemical and Electrochemical Reduction of EC in EC:EMC/1.2M LiPF6 Electrolyte , 2005 .

[136]  Craig E. Banks,et al.  Electrocatalysis at Graphite and Carbon Nanotube Modified Electrodes: Edge‐Plane Sites and Tube Ends Are the Reactive Sites , 2005 .

[137]  Jan L. Allen,et al.  Ni3+/Ni2+ redox potential in LiNiPO4 , 2005 .

[138]  Kristina Edström,et al.  The cathode-electrolyte interface in the Li-ion battery , 2004 .

[139]  G. Ceder,et al.  THE LI INTERCALATION POTENTIAL OF LIMPO4 AND LIMSIO4 OLIVINES WITH M = FE, MN, CO, NI , 2004, cond-mat/0506111.

[140]  J. Dahn,et al.  Effects of solvents and salts on the thermal stability of LiC6 , 2004 .

[141]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[142]  K. Edström,et al.  Solid electrolyte interphase on graphite Li-ion battery anodes studied by soft X-ray spectroscopy , 2004 .

[143]  J. Dahn,et al.  Effects of particle size and electrolyte salt on the thermal stability of Li0.5CoO2 , 2004 .

[144]  B. Cho,et al.  Effect of Al2O3 coating on electrochemical performance of LiCoO2 as cathode materials for secondary lithium batteries , 2004 .

[145]  G. Pacchioni,et al.  Probing the basicity of regular and defect sites of alkaline earth metal oxide surfaces by BF3 adsorption: a theoretical analysis. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[146]  E. Peled,et al.  XPS analysis of the SEI formed on carbonaceous materials , 2004 .

[147]  B. Fultz,et al.  Thermodynamics of Lithium Intercalation into Graphites and Disordered Carbons , 2004 .

[148]  C. Delmas,et al.  Thermal Stability of Lithium Nickel Oxide Derivatives. Part 2. LixNi0.70Co0.15Al0.15 O2 and LixNi0.90Mn0.10O2 (x = 0.50 and 0.30). Comparison with LixNi1.02O2 and LixNi0.89Al0.16O2 , 2004 .

[149]  K. Amine,et al.  Reduction Mechanisms of Ethylene, Propylene, and Vinylethylene Carbonates A Quantum Chemical Study , 2004 .

[150]  C. Delmas,et al.  Thermal Stability of Lithium Nickel Oxide Derivatives. Part II: LixNi0.70Co0.15Al0.15O2 and LixNi0.90Mn0.10O2 (x = 0.50 and 0.30). Comparison with LixNi1.02O2 and LixNi0.89Al0.16O2 , 2003 .

[151]  Doron Aurbach,et al.  Electrode–solution interactions in Li-ion batteries: a short summary and new insights , 2003 .

[152]  T. Abe,et al.  AFM study of surface film formation on a composite graphite electrode in lithium-ion batteries , 2003 .

[153]  J. Yamaki,et al.  Thermal stability of electrolytes with LixCoO2 cathode or lithiated carbon anode , 2003 .

[154]  K. Edström,et al.  Electrochemically lithiated graphite characterised by photoelectron spectroscopy , 2003 .

[155]  J. Goodenough,et al.  Chemical, structural, and transport properties of Na 1 − x CoO 2 , 2003, cond-mat/0304455.

[156]  P. Bruce,et al.  Mechanism of Electrochemical Activity in Li2MnO3 , 2003 .

[157]  A. Manthiram,et al.  Phase Relationships and Structural and Chemical Stabilities of Charged Li1 − x CoO2 − δ and Li1 − x Ni0.85Co0.15 O 2 − δ Cathodes , 2003 .

[158]  Richard T. Haasch,et al.  Surface Characterization of Electrodes from High Power Lithium-Ion Batteries , 2002 .

[159]  Doron Aurbach,et al.  On the capacity fading of LiCoO2 intercalation electrodes:: the effect of cycling, storage, temperature, and surface film forming additives , 2002 .

[160]  J. Shim,et al.  Electrochemical analysis for cycle performance and capacity fading of a lithium-ion battery cycled at elevated temperature , 2002 .

[161]  Guohua Li,et al.  LiMnPO4 as the Cathode for Lithium Batteries , 2002 .

[162]  T. Gustafsson,et al.  Influence of Temperature on the Interface Chemistry of LixMn2O4 Electrodes , 2002 .

[163]  Christopher S. Johnson,et al.  Layered xLiMO2.(1 - x)Li2M'O3 electrodes for lithium batteries: a study of 0.95LiMn0.5Ni0.5O2.0.05Li2TiO3 , 2002 .

[164]  A. Manthiram,et al.  Comparison of the Chemical Stability of Li1−xCoO2 and Li1−xNi0.85Co0.15O2 Cathodes , 2002 .

[165]  Andrea G. Bishop,et al.  Surface analysis of LiMn2O4 electrodes in carbonate based electrolytes , 2002 .

[166]  Kang Xu,et al.  Understanding Solid Electrolyte Interface Film Formation on Graphite Electrodes , 2001 .

[167]  R. Kostecki,et al.  Electrochemical and Infrared Studies of the Reduction of Organic Carbonates , 2001 .

[168]  P. Balbuena,et al.  Theoretical studies to understand surface chemistry on carbon anodes for lithium-ion batteries: reduction mechanisms of ethylene carbonate. , 2001, Journal of the American Chemical Society.

[169]  A. Manthiram,et al.  Comparison of the chemical stability of the high energy density cathodes of lithium-ion batteries , 2001 .

[170]  Kristina Edström,et al.  Chemical Composition and Morphology of the Elevated Temperature SEI on Graphite , 2001 .

[171]  T. Gustafsson,et al.  Influence of carbon black and binder on Li-ion batteries , 2001 .

[172]  Minoru Inaba,et al.  Surface Film Formation on Graphite Negative Electrode in Lithium-Ion Batteries: AFM Study in an Ethylene Carbonate-Based Solution , 2001 .

[173]  Diana Golodnitsky,et al.  Composition, depth profiles and lateral distribution of materials in the SEI built on HOPG-TOF SIMS and XPS studies , 2001 .

[174]  Computation of Thermodynamic Oxidation Potentials of Organic Solvents Using Density Functional Theory , 2001 .

[175]  J. Kerr,et al.  Chemical reactivity of PF{sub 5} and LiPF{sub 6} in ethylene carbonate/dimethyl carbonate solutions , 2001 .

[176]  J. Yamaki,et al.  Measurement of the electrochemical oxidation of organic electrolytes used in lithium batteries by microelectrode , 2001 .

[177]  Doron Aurbach,et al.  Micromorphological Studies of Lithium Electrodes in Alkyl Carbonate Solutions Using in Situ Atomic Force Microscopy , 2000 .

[178]  Byungwoo Park,et al.  Novel LiCoO2 Cathode Material with Al2O3 Coating for a Li Ion Cell , 2000 .

[179]  D. Aurbach Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries , 2000 .

[180]  Peter Rez,et al.  Electron energy-loss spectrometry on lithiated graphite , 2000 .

[181]  Doron Aurbach,et al.  Factors Which Limit the Cycle Life of Rechargeable Lithium (Metal) Batteries , 2000 .

[182]  Doron Aurbach,et al.  The Study of Surface Phenomena Related to Electrochemical Lithium Intercalation into Li x MO y Host Materials (M = Ni, Mn) , 2000 .

[183]  A. Merson,et al.  Microphase structure of SEI on HOPG , 2000 .

[184]  Kang Xu,et al.  Toward Reliable Values of Electrochemical Stability Limits for Electrolytes , 1999 .

[185]  J. Tarascon,et al.  In Situ Structural and Electrochemical Study of Ni1-xCoxO2 Metastable Oxides Prepared by Soft Chemistry , 1999 .

[186]  T. Abe,et al.  STM study on graphite/electrolyte interface in lithium-ion batteries: solid electrolyte interface formation in trifluoropropylene carbonate solution , 1999 .

[187]  Rachid Yazami,et al.  Surface chemistry and lithium storage capability of the graphite-lithium electrode , 1999 .

[188]  Doron Aurbach,et al.  On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries , 1999 .

[189]  M. Broussely,et al.  On safety of lithium-ion cells , 1999 .

[190]  D. Aurbach,et al.  New insights into the interactions between electrode materials and electrolyte solutions for advanced nonaqueous batteries , 1999 .

[191]  Margret Wohlfahrt-Mehrens,et al.  A room temperature study of the binary lithium–silicon and the ternary lithium–chromium–silicon system for use in rechargeable lithium batteries , 1999 .

[192]  Doron Aurbach,et al.  Solid‐State Electrochemical Kinetics of Li‐Ion Intercalation into Li1 − x CoO2: Simultaneous Application of Electroanalytical Techniques SSCV, PITT, and EIS , 1999 .

[193]  E. Peled,et al.  A Study of Highly Oriented Pyrolytic Graphite as a Model for the Graphite Anode in Li‐Ion Batteries , 1999 .

[194]  J. Yamaki,et al.  Mixed solvent electrolyte for high voltage lithium metal secondary cells , 1999 .

[195]  K. Amine,et al.  OLIVINE LICOPO4 AS 4.8 V ELECTRODE MATERIAL FOR LITHIUM BATTERIES , 1999 .

[196]  A. Ohta,et al.  Analysis of the surface of lithium in organic electrolyte by atomic force microscopy, Fourier transform infrared spectroscopy and scanning auger electron microscopy , 1998 .

[197]  Koichi Tanaka,et al.  Electron Spin Resonance Study of the Electrochemical Reduction of Electrolyte Solutions for Lithium Secondary Batteries , 1998 .

[198]  E. Peled,et al.  An Advanced Tool for the Selection of Electrolyte Components for Rechargeable Lithium Batteries , 1998 .

[199]  D. Aurbach,et al.  Common Electroanalytical Behavior of Li Intercalation Processes into Graphite and Transition Metal Oxides , 1998 .

[200]  J. Tarascon,et al.  Differential Scanning Calorimetry Study of the Reactivity of Carbon Anodes in Plastic Li‐Ion Batteries , 1998 .

[201]  S. Okada,et al.  Electrochemical and structural study of Li2CuO2, LiCuO2 and NaCuO2 , 1998 .

[202]  Minoru Inaba,et al.  A.c. impedance analysis of electrochemical lithium intercalation into highly oriented pyrolytic graphite , 1997 .

[203]  Asao Kominato,et al.  Analysis of surface films on lithium in various organic electrolytes , 1997 .

[204]  M. Inaba,et al.  Electrochemical scanning tunneling microscopy analysis of the surface reactions on graphite basal plane in ethylene carbonate-based solvents and propylene carbonate , 1997 .

[205]  D. Aurbach,et al.  Recent studies on the correlation between surface chemistry, morphology, three-dimensional structures and performance of Li and Li-C intercalation anodes in several important electrolyte systems , 1997 .

[206]  M. Ue,et al.  Electrochemical Properties of Quaternary Ammonium Salts for Electrochemical Capacitors , 1997 .

[207]  E. Peled,et al.  Advanced Model for Solid Electrolyte Interphase Electrodes in Liquid and Polymer Electrolytes , 1997 .

[208]  D. Aurbach,et al.  Methyl Propyl Carbonate: A Promising Single Solvent for Li‐Ion Battery Electrolytes , 1997 .

[209]  J. Dahn,et al.  Synthesis and Electrochemistry of LiNixMn2-xO4. , 1997 .

[210]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[211]  Doron Aurbach,et al.  Failure and Stabilization Mechanisms of Graphite Electrodes , 1997 .

[212]  J. Dahn,et al.  Synthesis and Electrochemistry of LiNi x Mn2 − x O 4 , 1997 .

[213]  K. Kanamura,et al.  Studies on electrochemical oxidation of non-aqueous electrolyte on the LiCoO2 thin film electrode , 1996 .

[214]  Doron Aurbach,et al.  A Comparative Study of Synthetic Graphite and Li Electrodes in Electrolyte Solutions Based on Ethylene Carbonate‐Dimethyl Carbonate Mixtures , 1996 .

[215]  D. Aurbach,et al.  X-ray photoelectron spectroscopy studies of lithium surfaces prepared in several important electrolyte solutions. A comparison with previous studies by Fourier transform infrared spectroscopy , 1996 .

[216]  T. Abe,et al.  Electrochemical Scanning Tunneling Microscopy Observation of Highly Oriented Pyrolytic Graphite Surface Reactions in an Ethylene Carbonate-Based Electrolyte Solution , 1996 .

[217]  D. Aurbach,et al.  Impedance Spectroscopy of Li Electrodes. 4. A General Simple Model of the Li−Solution Interphase in Polar Aprotic Systems , 1996 .

[218]  S. Kondo,et al.  Synthesis and electrochemical studies of a new anode material, Li3 − xCoxN , 1996 .

[219]  D. Aurbach,et al.  The Study of Electrolyte Solutions Based on Ethylene and Diethyl Carbonates for Rechargeable Li Batteries II . Graphite Electrodes , 1995 .

[220]  D. Aurbach,et al.  The Study of Electrolyte Solutions Based on Ethylene and Diethyl Carbonates for Rechargeable Li Batteries I . Li Metal Anodes , 1995 .

[221]  Martin Winter,et al.  Filming mechanism of lithium-carbon anodes in organic and inorganic electrolytes , 1995 .

[222]  Doron Aurbach,et al.  Recent studies of the lithium-liquid electrolyte interface Electrochemical, morphological and spectral studies of a few important systems , 1995 .

[223]  Hiroshi Tamura,et al.  XPS Analysis of Lithium Surfaces Following Immersion in Various Solvents Containing LiBF4 , 1995 .

[224]  E. Peled,et al.  The role of SEI in lithium and lithium ion batteries , 1995 .

[225]  Doron Aurbach,et al.  The dependence of the performance of Li-C intercalation anodes for Li-ion secondary batteries on the electrolyte solution composition , 1994 .

[226]  Makoto Ue,et al.  Electrochemical Properties of Organic Liquid Electrolytes Based on Quaternary Onium Salts for Electrical Double‐Layer Capacitors , 1994 .

[227]  D. Aurbach,et al.  The Correlation Between the Surface Chemistry and the Performance of Li‐Carbon Intercalation Anodes for Rechargeable ‘Rocking‐Chair’ Type Batteries , 1994 .

[228]  D. Aurbach,et al.  Correlation between surface chemistry, morphology, cycling efficiency and interfacial properties of Li electrodes in solutions containing different Li salts , 1994 .

[229]  J. Tarascon,et al.  Rechargeable Li1 + x Mn2 O 4 / Carbon Cells with a New Electrolyte Composition Potentiostatic Studies and Application to Practical Cells , 1993 .

[230]  D. Aurbach,et al.  Impedance spectroscopy of lithium electrodes: Part 1. General behavior in propylene carbonate solutions and the correlation to surface chemistry and cycling efficiency , 1993 .

[231]  D. Aurbach,et al.  Electrochemical and spectroscopic studies of carbon electrodes in lithium battery electrolyte systems , 1993 .

[232]  N. Imanishi,et al.  Study on lithium intercalation into MoS2 , 1992 .

[233]  Doron Aurbach,et al.  The behaviour of lithium electrodes in propylene and ethylene carbonate: Te major factors that influence Li cycling efficiency , 1992 .

[234]  R. McCreery,et al.  Effects of Redox System Structure on Electron-Transfer Kinetics at Ordered Graphite and Glassy Carbon Electrodes , 1992 .

[235]  Jeff Dahn,et al.  Structure and electrochemistry of LixMnyNi1−yO2 , 1992 .

[236]  H. Tamura,et al.  XPS analysis of a lithium surface immersed in propylene carbonate solution containing various salts , 1992 .

[237]  C. Delmas,et al.  Electrochemical and physical properties of the LixNi1$minus;yCoyO2 phases , 1992 .

[238]  D. Aurbach,et al.  Solutions of LiAsF6 in 1,3-dioxolane for secondary lithium batteries , 1992 .

[239]  Doron Aurbach,et al.  The electrochemistry of noble metal electrodes in aprotic organic solvents containing lithium salts , 1991 .

[240]  Jeff Dahn,et al.  Studies of Lithium Intercalation into Carbons Using Nonaqueous Electrochemical Cells , 1990 .

[241]  Tsutomu Ohzuku,et al.  Electrochemistry of manganese dioxide in lithium nonaqueous cell. I: X-ray diffractional study on the reduction of electrolytic manganese dioxide , 1990 .

[242]  Tsutomu Ohzuku,et al.  Electrochemistry of Manganese Dioxide in Lithium Nonaqueous Cell , 1990 .

[243]  Doron Aurbach,et al.  Identification of Surface Films Formed on Lithium in Propylene Carbonate Solutions , 1987 .

[244]  R. Huggins,et al.  Behavior of Some Binary Lithium Alloys as Negative Electrodes in Organic Solvent‐Based Electrolytes , 1986 .

[245]  J. Goodenough,et al.  Synthesis and structural characterization of the normal spinel Li[Ni2]O4 , 1985 .

[246]  R. Muller,et al.  Composition of Surface Layers on Li Electrodes in PC, LiClO4 of Very Low Water Content , 1985 .

[247]  John B. Goodenough,et al.  AC impedance analysis of polycrystalline insertion electrodes: application to Li1−xCoO2 , 1985 .

[248]  R. Muller,et al.  In Situ X‐Ray Diffraction of Surface Layers on Lithium in Nonaqueous Electrolyte , 1985 .

[249]  J. Goodenough,et al.  Structural characterization of delithiated LiVO2 , 1984 .

[250]  Emanuel Peled,et al.  Film forming reaction at the lithium/electrolyte interface , 1983 .

[251]  Rachid Yazami,et al.  A reversible graphite-lithium negative electrode for electrochemical generators , 1983 .

[252]  R. Huggins,et al.  Thermodynamic Study of the Lithium‐Tin System , 1981 .

[253]  R. Huggins,et al.  Chemical diffusion in intermediate phases in the lithium-tin system , 1980 .

[254]  M. Froment,et al.  Behavior of Secondary Lithium and Aluminum‐Lithium Electrodes in Propylene Carbonate , 1980 .

[255]  John B. Goodenough,et al.  LixCoO2 (0, 1980 .

[256]  Emanuel Peled,et al.  The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems—The Solid Electrolyte Interphase Model , 1979 .

[257]  M. Whittingham Chemistry of intercalation compounds: Metal guests in chalcogenide hosts , 1979 .

[258]  A. Dey Lithium anode film and organic and inorganic electrolyte batteries , 1977 .

[259]  M. Whittingham,et al.  Electrical Energy Storage and Intercalation Chemistry , 1976, Science.

[260]  A. Dey,et al.  The Electrochemical Decomposition of Propylene Carbonate on Graphite , 1970 .