Mach limits in analytic spaces

Abstract We address the Mach limit problem for the Euler equations in the analytic spaces. We prove that, given analytic data, the solutions to the compressible Euler equations are uniformly bounded in a suitable analytic norm and then show that the convergence toward the incompressible Euler solution holds in the analytic norm. We also show that the same results hold more generally for Gevrey data with the convergence in the Gevrey norms.

[1]  Igor Kukavica,et al.  Space Analyticity for the Navier–Stokes and Related Equations with Initial Data inLp , 1998 .

[2]  Jerry L. Bona,et al.  A KdV-type Boussinesq system: From the energy level to analytic spaces , 2009 .

[3]  D. Hoff The Zero-Mach Limit of Compressible Flows , 1998 .

[4]  I. Kukavica,et al.  Local analyticity radii of solutions to the 3D Navier–Stokes equations with locally analytic forcing , 2015 .

[5]  H. Isozaki Singular limits for the compressible Euler equation in an exterior domain. II. Bodies in a uniform flow , 1989 .

[6]  E. Titi,et al.  On the Domain of Analyticity for Solutions of Second Order Analytic Nonlinear Differential Equations , 2001 .

[7]  Y. Giga Time and spartial analyticity of solutions of the navier-stokes equations , 1983 .

[8]  Marcel Oliver,et al.  Analyticity of Solutions for a Generalized Euler Equation , 1997 .

[9]  N. Masmoudi Incompressible, inviscid limit of the compressible Navier-Stokes system , 2001 .

[10]  E. Feireisl FLOWS OF VISCOUS COMPRESSIBLE FLUIDS UNDER STRONG STRATIFICATION: INCOMPRESSIBLE LIMITS FOR LONG-RANGE POTENTIAL FORCES , 2011 .

[11]  S. Schochet,et al.  The Incompressible Limit of the Non-Isentropic Euler Equations , 2001 .

[12]  I. Kukavica,et al.  The Domain of Analyticity of Solutions to the Three-Dimensional Euler Equations in a Half Space , 2010, 1007.2011.

[13]  Motion of slightly compressible fluids in a bounded domain. II , 2013, 1309.0477.

[14]  S. Schochet THE MATHEMATICAL THEORY OF LOW MACH NUMBER FLOWS , 2005 .

[15]  B. Desjardins,et al.  Low Mach number limit of viscous compressible flows in the whole space , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[16]  D. Ebin The motion of slightly compressible fluids viewed as a motion with strong constraining force , 1977 .

[17]  S. Schochet The compressible Euler equations in a bounded domain: Existence of solutions and the incompressible limit , 1986 .

[18]  R. Temam,et al.  Gevrey class regularity for the solutions of the Navier-Stokes equations , 1989 .

[19]  Local existence and Gevrey regularity of 3-D Navier-Stokes equations with ℓ p initial data , 2005 .

[20]  Hiroshi Isozaki,et al.  Wave operators and the incompressible limit of the compressible Euler equation , 1987 .

[21]  Analyticity up to the boundary for the Stokes and the Navier-Stokes systems , 2020 .

[22]  E. Feireisl,et al.  Inviscid Incompressible Limits of the Full Navier-Stokes-Fourier System , 2012, 1205.6452.

[23]  Eduard Feireisl,et al.  On the Low Mach Number Limit for the Compressible Euler System , 2019, SIAM J. Math. Anal..

[24]  Chenyun Luo,et al.  On the Incompressible Limit for the Compressible Free-Boundary Euler Equations with Surface Tension in the Case of a Liquid , 2019, Archive for Rational Mechanics and Analysis.

[25]  From compressible to incompressible inhomogeneous flows in the case of large data , 2017, Tunisian Journal of Mathematics.

[26]  P. Lions,et al.  Incompressible limit for a viscous compressible fluid , 1998 .

[27]  Thomas Alazard,et al.  Incompressible limit of the nonisentropic Euler equations with the solid wall boundary conditions , 2005, Advances in Differential Equations.

[28]  D. Ebin Motion of slightly compressible fluids in a bounded domain. I , 1982 .

[29]  C. Foias,et al.  On the maximal space analyticity radius for the 3D Navier–Stokes equations and energy cascades , 2014 .

[30]  R. Danchin,et al.  Zero Mach number limit for compressible flows with periodic boundary conditions , 2002 .

[31]  I. Kukavica,et al.  Space Analyticity for the NavierStokes and Related Equations with Initial Data in L p , 1998 .

[32]  R. Danchin Zero Mach number limit in critical spaces for compressible Navier–Stokes equations , 2002 .

[33]  S. Ukai The incompressible limit and the initial layer of the compressible Euler equation , 1986 .

[34]  K. Asano On the incompressible limit of the compressible Euler equation , 1987 .

[35]  T. Alazard A minicourse on the low Mach number limit , 2008 .

[36]  C. Bardos,et al.  Domaine d’analycité des solutions de l’équation d’Euler dans un ouvert de $R^n$ , 1977 .

[37]  The Incompressible Limit and the Initial Layer of the Compressible Euler Equation in ℝn , 1997 .

[38]  Harold R. Parks,et al.  A Primer of Real Analytic Functions , 1992 .

[39]  Hiroshi Isozaki,et al.  Singular limits for the compressible Euler equation in an exterior domain , 1986 .

[40]  A. Majda,et al.  Compressible and incompressible fluids , 1982 .

[41]  T. Alazard,et al.  Low Mach Number Limit of the Full Navier-Stokes Equations , 2005, math/0501386.

[42]  A. Majda,et al.  Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit , 1981 .