Weighted Bipartite Matching in Matrix Multiplication Time

In this paper we consider the problem of finding maximum weighted matchings in bipartite graphs with nonnegative integer weights. The presented algorithm for this problem work in $\tilde{O}(Wn^{\omega})$ time, where ω is the matrix multiplication exponent, and W is the highest edge weight in the graph. As a consequence of this result we obtain $\tilde{O}(Wn^{\omega})$ time algorithms for computing: minimum weight bipartite vertex cover, single source shortest paths and minimum weight vertex disjoint s-t paths.

[1]  Raphael Yuster,et al.  Answering distance queries in directed graphs using fast matrix multiplication , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[2]  Jacob T. Schwartz,et al.  Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.

[3]  J. Munkres ALGORITHMS FOR THE ASSIGNMENT AND TRANSIORTATION tROBLEMS* , 1957 .

[4]  Richard M. Karp,et al.  Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems , 1972, Combinatorial Optimization.

[5]  L. R. Ford,et al.  NETWORK FLOW THEORY , 1956 .

[6]  Eli Upfal,et al.  Constructing a perfect matching is in random NC , 1985, STOC '85.

[7]  H. Kuhn The Hungarian method for the assignment problem , 1955 .

[8]  Don Coppersmith,et al.  Matrix multiplication via arithmetic progressions , 1987, STOC.

[9]  László Lovász,et al.  On determinants, matchings, and random algorithms , 1979, FCT.

[10]  Harold N. Gabow Scaling Algorithms for Network Problems , 1985, J. Comput. Syst. Sci..

[11]  Piotr Sankowski,et al.  Shortest Paths in Matrix Multiplication Time , 2005, ESA.

[12]  Ming-Yang Kao,et al.  A Decomposition Theorem for Maximum Weight Bipartite Matchings with Applications to Evolutionary Trees , 1999, ESA.

[13]  Vijay V. Vazirani,et al.  Maximum Matchings in General Graphs Through Randomization , 1989, J. Algorithms.

[14]  D. Eppstein Representing all minimum spanning trees with applications to counting and generation , 1995 .

[15]  Richard Bellman,et al.  ON A ROUTING PROBLEM , 1958 .

[16]  Robert E. Tarjan,et al.  Faster Scaling Algorithms for Network Problems , 1989, SIAM J. Comput..

[17]  Richard Zippel,et al.  Probabilistic algorithms for sparse polynomials , 1979, EUROSAM.

[18]  Arne Storjohann,et al.  High-order lifting and integrality certification , 2003, J. Symb. Comput..

[19]  Piotr Sankowski,et al.  Maximum matchings via Gaussian elimination , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[20]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[21]  Andrew V. Goldberg,et al.  Scaling algorithms for the shortest paths problem , 1995, SODA '93.