Evaluating the critical strain energy release rate of bioactive glass coatings on Ti6Al4V substrates after degradation.

[1]  E. Schemitsch,et al.  Quantifying the mode II critical strain energy release rate of borate bioactive glass coatings on Ti6Al4V substrates. , 2017, Journal of the mechanical behavior of biomedical materials.

[2]  T. Anderson,et al.  Fracture mechanics - Fundamentals and applications , 2017 .

[3]  E. Schemitsch,et al.  Characterization and fracture property of different strontium-containing borate-based glass coatings for Ti6Al4V substrates , 2017 .

[4]  E. Schemitsch,et al.  Silica-Based and Borate-Based, Titania-Containing Bioactive Coatings Characterization: Critical Strain Energy Release Rate, Residual Stresses, Hardness, and Thermal Expansion , 2016, Journal of functional biomaterials.

[5]  S. Waldman,et al.  Antibacterial and osteo-stimulatory effects of a borate-based glass series doped with strontium ions , 2016, Journal of biomaterials applications.

[6]  E. Schemitsch,et al.  Quantitative evaluation of the adhesion of bioactive glasses onto Ti6Al4V substrates , 2016 .

[7]  J. Gil-Albarova,et al.  Cementless Hydroxyapatite Coated Hip Prostheses , 2015, BioMed research international.

[8]  N. Mellott,et al.  Investigating the influence of Na+ and Sr2+ on the structure and solubility of SiO2–TiO2–CaO–Na2O/SrO bioactive glass , 2015, Journal of Materials Science: Materials in Medicine.

[9]  L. Bonewald,et al.  Healing of critical-size segmental defects in rat femora using strong porous bioactive glass scaffolds. , 2014, Materials science & engineering. C, Materials for biological applications.

[10]  A. Wren,et al.  Investigating the surface reactivity of SiO2–TiO2–CaO–Na2O/SrO bioceramics as a function of structure and incubation time in simulated body fluid , 2014, Journal of Materials Science: Materials in Medicine.

[11]  Shu Cai,et al.  Sol–gel derived mesoporous 58S bioactive glass coatings on AZ31 magnesium alloy and in vitro degradation behavior , 2014 .

[12]  N. Veeraiah,et al.  Studies on influence of aluminium ions on the bioactivity of B2O3–SiO2–P2O5–Na2O–CaO glass system by means of spectroscopic studies , 2013 .

[13]  B. Badran,et al.  Molecular mechanisms of mesenchymal stem cell differentiation towards osteoblasts. , 2013, World journal of stem cells.

[14]  Changqing Zhang,et al.  Evaluation of Ti implants coated with Ag-containing borate bioactive glass for simultaneous eradication of infection and fracture fixation in a rabbit tibial model , 2012 .

[15]  O. Clarkin,et al.  Fabrication of CaO–NaO–SiO2/TiO2 scaffolds for surgical applications , 2012, Journal of Materials Science: Materials in Medicine.

[16]  J. K. Spelt,et al.  Crack path selection in the fracture of fresh and degraded epoxy adhesive joints , 2011 .

[17]  J. K. Spelt,et al.  Mixed-mode fatigue behavior of degraded toughened epoxy adhesive joints , 2011 .

[18]  A. Berdal,et al.  Effects of strontium-doped bioactive glass on the differentiation of cultured osteogenic cells. , 2011, European cells & materials.

[19]  E. Eriksen,et al.  Cellular mechanisms of bone remodeling , 2010, Reviews in Endocrine and Metabolic Disorders.

[20]  Carl Miller,et al.  Materials characterisation and cytotoxic assessment of strontium-substituted bioactive glasses for bone regeneration , 2010 .

[21]  J. K. Spelt,et al.  Fracture R-curve of a toughened epoxy adhesive as a function of irreversible degradation , 2010 .

[22]  J. K. Spelt,et al.  Effect of Surface Roughness on the Performance of Adhesive Joints Under Static and Cyclic Loading , 2010 .

[23]  L. C. Li,et al.  Strontium borate glass: potential biomaterial for bone regeneration , 2010, Journal of The Royal Society Interface.

[24]  A. Tilocca Sodium migration pathways in multicomponent silicate glasses: Car-Parrinello molecular dynamics simulations. , 2010, The Journal of chemical physics.

[25]  Wenhai Huang,et al.  Conversion of borate-based glass scaffold to hydroxyapatite in a dilute phosphate solution , 2010, Biomedical materials.

[26]  A. Tilocca,et al.  Surface signatures of bioactivity: MD simulations of 45S and 65S silicate glasses. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[27]  Ding Li,et al.  Dissolution of bioactive glasses: The effects of crystallinity coupled with stress , 2009 .

[28]  T. Uysal,et al.  Stimulation of bone formation by dietary boron in an orthopedically expanded suture in rabbits. , 2009, The Angle orthodontist.

[29]  A. Tilocca,et al.  Modeling the water-bioglass interface by ab initio molecular dynamics simulations. , 2009, ACS applied materials & interfaces.

[30]  J. Nedelec,et al.  New strontium-based bioactive glasses: physicochemical reactivity and delivering capability of biologically active dissolution products , 2009 .

[31]  Z. Yang,et al.  Solid-state hydrogen storage: Storage capacity, thermodynamics, and kinetics , 2009 .

[32]  D. Day,et al.  Effect of borate glass composition on its conversion to hydroxyapatite and on the proliferation of MC3T3-E1 cells. , 2009, Journal of biomedical materials research. Part A.

[33]  Ding Li,et al.  Indentation-induced residual stresses in 45S5 bioglass and the stress effect on the material dissolution , 2008 .

[34]  R. Brow,et al.  Bioactive borate glass coatings for titanium alloys , 2008, Journal of materials science. Materials in medicine.

[35]  N. Faucheux,et al.  Differentiation of preosteoblasts using a delivery system with BMPs and bioactive glass microspheres , 2007, Journal of materials science. Materials in medicine.

[36]  C. Lengner,et al.  Networks and hubs for the transcriptional control of osteoblastogenesis , 2006, Reviews in Endocrine and Metabolic Disorders.

[37]  G. M. Swallowe,et al.  An experimental investigation of residual stresses in an epoxy-steel laminate , 2006 .

[38]  Wenhai Huang,et al.  Kinetics and mechanisms of the conversion of silicate (45S5), borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solutions , 2006, Journal of materials science. Materials in medicine.

[39]  E. Saiz,et al.  Fatigue behaviour of a glass coating on Ti6AL4V for biomedical applications , 2006, Revista Facultad de Ingeniería Universidad de Antioquia.

[40]  A. Ureña,et al.  Study of the effect of substrate roughness on adhesive joints by SEM image analysis , 2006 .

[41]  Junzo Tanaka,et al.  The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. , 2005, Biomaterials.

[42]  Yung‐Chin Yang,et al.  Measurements of residual stresses in plasma-sprayed hydroxyapatite coatings on titanium alloy , 2005 .

[43]  N. Veeraiah,et al.  The role of titanium ions on structural, dielectric and optical properties of Li2O–MgO–B2O3 glass system , 2004 .

[44]  Yu-peng Lu,et al.  Plasma-sprayed hydroxyapatite+titania composite bond coat for hydroxyapatite coating on titanium substrate. , 2004, Biomaterials.

[45]  J. Ong,et al.  Evaluation of titanium plasma-sprayed and plasma-sprayed hydroxyapatite implants in vivo. , 2004, Biomaterials.

[46]  L. Francis,et al.  Effects of materials parameters on mineralization and degradation of sol-gel bioactive glasses with 3D-ordered macroporous structures. , 2003, Journal of biomedical materials research. Part A.

[47]  R. Cloots,et al.  In vivo behaviour of hydroxyapatite coatings on titanium implants: a quantitative study in the rabbit. , 2002, Biomaterials.

[48]  Larry L Hench,et al.  Third-Generation Biomedical Materials , 2002, Science.

[49]  J. Deng,et al.  The Novel Zinc Finger-Containing Transcription Factor Osterix Is Required for Osteoblast Differentiation and Bone Formation , 2002, Cell.

[50]  K. Lau,et al.  Dietary boron supplementation enhances the effects of estrogen on bone mineral balance in ovariectomized rats , 2001, Biological Trace Element Research.

[51]  Y. Han,et al.  Dissolution response of hydroxyapatite coatings to residual stresses. , 2001, Journal of biomedical materials research.

[52]  Jan K. Spelt,et al.  Measurement of adhesive joint fracture properties as a function of environmental degradation , 1998 .

[53]  T. Vu-khanh,et al.  Use of end-loaded-split (ELS) test to study stable fracture behaviour of composites under mode II loading , 1996 .

[54]  M. Hojo,et al.  Prestandardization study on mode II interlaminar fracture toughness test for cfrp in japan , 1995 .

[55]  P. Ducheyne,et al.  Bioactive material template for in vitro synthesis of bone. , 1995, Journal of biomedical materials research.

[56]  E. van der Velde,et al.  In vivo tensile testing of fluorapatite and hydroxylapatite plasma-sprayed coatings. , 1994, Journal of biomedical materials research.

[57]  Kenji Morinaga,et al.  Effect of modifier ions on fluorescence and absorption of Eu3+ in alkali and alkaline earth silicate glasses , 1994 .

[58]  K. Fung,et al.  Plasma bone-specific alkaline phosphatase as an indicator of osteoblastic activity. , 1993, The Journal of bone and joint surgery. British volume.

[59]  E. Wang,et al.  Bone morphogenetic protein-2 stimulates alkaline phosphatase activity and collagen synthesis in cultured osteoblastic cells, MC3T3-E1. , 1991, Biochemical and biophysical research communications.

[60]  H. Aoki,et al.  Thermal expansion of hydroxyapatite-β-tricalcium phosphate ceramics , 1990 .

[61]  H. Oonishi,et al.  The effect of hydroxyapatite coating on bone growth into porous titanium alloy implants. , 1989, The Journal of bone and joint surgery. British volume.

[62]  Anthony G. Evans,et al.  Effects of non-planarity on the mixed mode fracture resistance of bimaterial interfaces , 1989 .

[63]  M. D. Thouless,et al.  Residual stresses and cracking in brittle solids bonded with a thin ductile layer , 1988 .

[64]  J. Gillespie,et al.  Mode II Interlaminar Fracture of Graphite/Epoxy and Graphite/PEEK , 1986 .

[65]  E. Zalnezhad,et al.  Comparative investigation on the adhesion of hydroxyapatite coating on Ti–6Al–4V implant: A review paper , 2014 .

[66]  Julian R Jones,et al.  Review of bioactive glass: from Hench to hybrids. , 2013, Acta biomaterialia.

[67]  J. K. Spelt,et al.  Prediction of environmental degradation of closed adhesive joints using data from open-faced specimens , 2012 .

[68]  J. K. Spelt,et al.  Hygrothermal degradation of two rubber-toughened epoxy adhesives: Application of open-faced fracture tests , 2011 .

[69]  Eduardo Saiz,et al.  Bioactive glass coatings for orthopedic metallic implants , 2003 .

[70]  K A Gross,et al.  Material fundamentals and clinical performance of plasma-sprayed hydroxyapatite coatings: a review. , 2001, Journal of biomedical materials research.

[71]  G. Chryssikos,et al.  Structure and properties of alkaline earth borate glasses , 2001 .

[72]  Jan K. Spelt,et al.  Mixed-mode fracture characterization of adhesive joints , 1994 .

[73]  Gretchen B. Murri,et al.  Interlaminar shear fracture toughness and fatigue thresholds for composite materials , 1989 .

[74]  Klaus Friedrich,et al.  Application of fracture mechanics to composite materials , 1989 .

[75]  C. Klein,et al.  Bonding of bone to apatite-coated implants. , 1988, The Journal of bone and joint surgery. British volume.

[76]  R. Ellis Macromolecular crowding : obvious but underappreciated , 2022 .