Iterative search method for total flowtime minimization no-wait flowshop problem

[1]  Quan-Ke Pan,et al.  Effective heuristics for the no-wait flow shop scheduling problem with total flow time minimization , 2013 .

[2]  Jing J. Liang,et al.  A Hybrid Harmony Search Algorithm for the no-Wait Flow-shop Scheduling Problems , 2012, Asia Pac. J. Oper. Res..

[3]  Jorge M. S. Valente,et al.  Hybrid heuristics for the single machine scheduling problem with quadratic earliness and tardiness costs , 2012, Int. J. Mach. Learn. Cybern..

[4]  Weiming Shen,et al.  Effective genetic algorithm for resource-constrained project scheduling with limited preemptions , 2011, Int. J. Mach. Learn. Cybern..

[5]  Quan-Ke Pan,et al.  Discrete harmony search algorithm for the no-wait flow shop scheduling problem with total flow time criterion , 2011 .

[6]  J. Framiñan,et al.  An efficient heuristic for total flowtime minimisation in no-wait flowshops , 2010 .

[7]  Mehmet Fatih Tasgetiren,et al.  A discrete particle swarm optimization algorithm for the no-wait flowshop scheduling problem , 2008, Comput. Oper. Res..

[8]  Thomas Stützle,et al.  A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem , 2007, Eur. J. Oper. Res..

[9]  Tariq A. Aldowaisan,et al.  NEW HEURISTICS FOR M-MACHINE NO-WAIT FLOWSHOP TO MINIMIZE TOTAL COMPLETION TIME , 2004 .

[10]  Srikanth K. Iyer,et al.  Improved genetic algorithm for the permutation flowshop scheduling problem , 2004, Comput. Oper. Res..

[11]  Andreas C. Nearchou,et al.  The effect of various operators on the genetic search for large scheduling problems , 2004 .

[12]  Stefan Voß,et al.  Solving the continuous flow-shop scheduling problem by metaheuristics , 2003, Eur. J. Oper. Res..

[13]  Stéphane Dauzère-Pérès,et al.  Genetic algorithms to minimize the weighted number of late jobs on a single machine , 2003, Eur. J. Oper. Res..

[14]  Ling Wang,et al.  An effective hybrid optimization strategy for job-shop scheduling problems , 2001, Comput. Oper. Res..

[15]  Edy Bertolissi,et al.  Heuristic algorithm for scheduling in the no-wait flow-shop , 2000 .

[16]  Chuen-Lung Chen,et al.  Genetic algorithms applied to the continuous flow shop problem , 1996 .

[17]  Chelliah Sriskandarajah,et al.  A Survey of Machine Scheduling Problems with Blocking and No-Wait in Process , 1996, Oper. Res..

[18]  Michael Pinedo Scheduling: Theory, Algorithms, and Systems , 1994 .

[19]  Éric D. Taillard,et al.  Benchmarks for basic scheduling problems , 1993 .

[20]  D. Chaudhuri,et al.  Heuristic algorithms for continuous flow-shop problem , 1990 .

[21]  D. Pohoryles,et al.  Flowshop/no-idle or no-wait scheduling to minimize the sum of completion times , 1982 .

[22]  A. S. Spachis,et al.  Heuristics for flow-shop scheduling , 1980 .

[23]  Daniel J. Rosenkrantz,et al.  An Analysis of Several Heuristics for the Traveling Salesman Problem , 1977, SIAM J. Comput..

[24]  K. R. Baker,et al.  Minimizing Mean Flowtime in the Flow Shop with No Intermediate Queues , 1974 .

[25]  Dipak Laha,et al.  An improved heuristic to minimize total flow time for scheduling in the m-machine no-wait flow shop , 2014, Comput. Ind. Eng..

[26]  Rubén Ruiz,et al.  A comprehensive review and evaluation of permutation flowshop heuristics to minimize flowtime , 2013, Comput. Oper. Res..

[27]  Li Xiao,et al.  Objective Increment Based Iterative Greedy Heuristic for No-Wait Flowshops with Total Flowtime Minimization , 2009 .

[28]  Jiyin Liu,et al.  Addressing the gap in scheduling research: a review of optimization and heuristic methods in production scheduling , 1993 .

[29]  Maurice Bonney,et al.  Solutions to the Constrained Flowshop Sequencing Problem , 1976 .