The Applicability of Fluid Model to Electrical Breakdown and Glow Discharge Modeling in Argon

The simple fluid model, an extended fluid model, and the fluid model with nonlocal ionization are applied for the calculations of static breakdown voltages, Paschen curves and current-voltage characteristics. The best agreement with the experimental data for the Paschen curve modeling is achieved by using the model with variable secondary electron yield. The modeling of current-voltage characteristics is performed for different inter-electrode distances and the results are compared with the experimental data. The fluid model with nonlocal ionization shows an excellent agreement for all inter-electrode distances, while the extended fluid model with variable electron transport coefficients agrees well with measurements at short inter-electrode distances when ionization by fast electrons can be neglected.

[1]  Zhaoshuai Ma,et al.  Numerical study of effect of secondary electron emission on discharge characteristics in low pressure capacitive RF argon discharge , 2014 .

[2]  A. Bogaerts,et al.  Computer simulations of plasma–biomolecule and plasma–tissue interactions for a better insight in plasma medicine , 2014 .

[3]  Liu Yue,et al.  A Computational Study of Radio Frequency Atmospheric Pressure Discharge in Nitrogen and Oxygen Mixture Gases , 2013 .

[4]  A. Kudryavtsev,et al.  Account of nonlocal ionization by fast electrons in the fluid models of a direct current glow discharge , 2012 .

[5]  Hu 虎 Wang 王,et al.  Multichannel Discharge Characteristics of Gas Switch Gap in SF6-N2 or SF6-Ar Gas Mixtures Under Nanosecond Triggering Pulses , 2011 .

[6]  Daphne Pappas,et al.  Status and potential of atmospheric plasma processing of materials , 2011 .

[7]  A. Bouchikhi,et al.  2D DC Subnormal Glow Discharge in Argon , 2010 .

[8]  Gregor E. Morfill,et al.  Plasma medicine: an introductory review , 2009 .

[9]  Georges Zissis,et al.  State of art on the science and technology of electrical light sources: from the past to the future , 2009 .

[10]  W. Schmidt,et al.  A stabilized finite element method for modeling of gas discharges , 2009, Comput. Phys. Commun..

[11]  L. Tsendin,et al.  Role of nonlocal ionization in formation of the short glow discharge , 2008 .

[12]  Yu Qian,et al.  Numerical Study on Characteristics of Argon Radio-Frequency Glow Discharge with Varying gas Pressure , 2008 .

[13]  Shafiq-Ur-Rehman,et al.  Modeling characteristics of nonequilibrium processes during breakdown of capacitive rf argon glow discharge , 2008 .

[14]  Sinan Bilikmen,et al.  Modelling of non-uniform DC driven glow discharge in argon gas , 2007 .

[15]  L. Pitchford,et al.  Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models , 2005 .

[16]  Z. Petrović,et al.  Study of relaxation kinetics in argon afterglow by the breakdown time delay measurements , 2005 .

[17]  A. Lichtenberg,et al.  Principles of Plasma Discharges and Materials Processing , 1994 .

[18]  Fiala,et al.  Two-dimensional, hybrid model of low-pressure glow discharges. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[19]  D. J. Economou,et al.  Fluid simulations of glow discharges: Effect of metastable atoms in argon , 1993 .

[20]  M. Elta,et al.  A staggered-mesh finite-difference numerical method for solving the transport equations in low pressure RF glow discharges , 1988 .

[21]  C. S. Davies,et al.  Computer simulation of rapidly developing gaseous discharges , 1971 .

[22]  A. Ward Effect of Space Charge in Cold-Cathode Gas Discharges , 1958 .

[23]  A. Kruithof,et al.  Townsend's ionization coefficients for neon, argon, krypton and xenon , 1940 .

[24]  J. Strikwerda Finite Difference Schemes and Partial Differential Equations, Second Edition , 2004 .

[25]  Claude Brezinski,et al.  Numerical Methods for Engineers and Scientists , 1992 .

[26]  J. Wilhelm,et al.  Modelling of Low Pressure Reactive RF Plasmas , 1988 .

[27]  A. C. Bajpai,et al.  Numerical Methods for Engineers and Scientists. , 1978 .

[28]  H. Gummel,et al.  Large-signal analysis of a silicon Read diode oscillator , 1969 .