Molecular Beam Epitaxy of Two-Dimensional Vanadium-Molybdenum Diselenide Alloys.

Two-dimensional (2D) alloys represent a versatile platform that extends the properties of atomically thin transition-metal dichalcogenides. Here, using molecular beam epitaxy (MBE), we investigate the growth of 2D vanadium-molybdenum diselenide alloys, VxMo1-xSe2, on highly oriented pyrolytic graphite, and unveil their structural, chemical and electronic integrities via measurements by scanning tunneling microscopy/spectroscopy (STM/STS), synchrotron X-ray photoemission (XPS), and X-ray absorption spectroscopy (XAS). Essentially, we found a critical value of x = ~0.44, below which phase separation occurs, and above which a homogeneous metallic phase is favored. Another observation is an effective increase in the density of mirror twin boundaries of constituting MoSe2 in the low V concentration regime (x ≤ 0.05). Density functional theory calculations support our experimental results on the thermal stability of 2D VxMo1-xSe2 alloys, and suggest an H phase of the homogeneous alloys with alternating parallel V and Mo strips randomly in-plane stacked. Element-specific XAS of the 2D alloys, which clearly indicates quenched atomic multiplets similar to the case of 2H-VSe2, provides strong evidence for the H phase of the 2D alloys. This work provides a comprehensive understanding of the thermal stability, chemical state and electronic structure of 2D VxMo1-xSe2 alloys, useful for the future design of 2D electronic devices.

[1]  Hao Tan,et al.  Synergetic Effect of Substitutional Dopants and Sulfur Vacancy in Modulating the Ferromagnetism of MoS2 Nanosheets. , 2019, ACS applied materials & interfaces.

[2]  Y. Feng,et al.  Magnetic Transition in Monolayer VSe2 via Interface Hybridization. , 2019, ACS nano.

[3]  Wei Chen,et al.  Metallic 1T Phase, 3d1 Electronic Configuration and Charge Density Wave Order in Molecular Beam Epitaxy Grown Monolayer Vanadium Ditelluride. , 2019, ACS nano.

[4]  G. Brocks,et al.  Evidence of Spin Frustration in a Vanadium Diselenide Monolayer Magnet , 2019, Advanced materials.

[5]  Wenqing Liu,et al.  Hybrid spintronic materials: Growth, structure and properties , 2019, Progress in Materials Science.

[6]  Z. Yin,et al.  Large‐Area Synthesis of Layered HfS2(1−x)Se2x Alloys with Fully Tunable Chemical Compositions and Bandgaps , 2018, Advanced materials.

[7]  A. Bostwick,et al.  Emergence of a Metal-Insulator Transition and High-Temperature Charge-Density Waves in VSe2 at the Monolayer Limit. , 2018, Nano letters.

[8]  L. B. Duffy,et al.  Electronic Structure and Enhanced Charge-Density Wave Order of Monolayer VSe2. , 2018, Nano letters.

[9]  A. Krasheninnikov,et al.  Post-Synthesis Modifications of Two-Dimensional MoSe2 or MoTe2 by Incorporation of Excess Metal Atoms into the Crystal Structure. , 2018, ACS nano.

[10]  Yeliang Wang,et al.  Epitaxially grown monolayer VSe2: an air-stable magnetic two-dimensional material with low work function at edges. , 2018, Science bulletin.

[11]  E. Kaxiras,et al.  Unconventional superconductivity in magic-angle graphene superlattices , 2018, Nature.

[12]  Raja Das,et al.  Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates , 2018, Nature Nanotechnology.

[13]  E. Kaxiras,et al.  Correlated insulator behaviour at half-filling in magic-angle graphene superlattices , 2018, Nature.

[14]  Pratik M. Pataniya,et al.  Crystal growth, characterization and photo detection properties of 2H–V0.75W0.25Se2 ternary alloy with 1T–VSe2 secondary phase , 2017 .

[15]  P. Ajayan,et al.  Quaternary 2D Transition Metal Dichalcogenides (TMDs) with Tunable Bandgap , 2017, Advanced materials.

[16]  D. Muller,et al.  Janus monolayers of transition metal dichalcogenides. , 2017, Nature nanotechnology.

[17]  G. Duscher,et al.  Suppression of Defects and Deep Levels Using Isoelectronic Tungsten Substitution in Monolayer MoSe2 , 2017 .

[18]  M. Batzill,et al.  Angle resolved photoemission spectroscopy reveals spin charge separation in metallic MoSe2 grain boundary , 2017, Nature Communications.

[19]  Colin F. Dickens,et al.  Combining theory and experiment in electrocatalysis: Insights into materials design , 2017, Science.

[20]  K. Jacobsen,et al.  Atomically Thin Ordered Alloys of Transition Metal Dichalcogenides: Stability and Band Structures , 2016 .

[21]  Kyeongjae Cho,et al.  Charge Mediated Reversible Metal-Insulator Transition in Monolayer MoTe2 and WxMo1-xTe2 Alloy. , 2016, ACS nano.

[22]  L. Deng,et al.  Achieving Ultrafast Hole Transfer at the Monolayer MoS2 and CH3NH3PbI3 Perovskite Interface by Defect Engineering. , 2016, ACS nano.

[23]  J. Shan,et al.  Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides , 2016, Nature Photonics.

[24]  S. Mannsfeld,et al.  Flexible 2D Crystals of Polycyclic Aromatics Stabilized by Static Distortion Waves , 2016, ACS nano.

[25]  D. F. Ogletree,et al.  Charge density wave order in 1D mirror twin boundaries of single-layer MoSe2 , 2016, Nature Physics.

[26]  R. Skomski,et al.  2D transition-metal diselenides: phase segregation, electronic structure, and magnetism , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[27]  G. Ryu,et al.  Controllable synthesis of molybdenum tungsten disulfide alloy for vertically composition-controlled multilayer , 2015, Nature Communications.

[28]  C. Robert,et al.  Spin-orbit engineering in transition metal dichalcogenide alloy monolayers , 2015, Nature Communications.

[29]  Hua Xu,et al.  Growth of MoS(2(1-x))Se(2x) (x = 0.41-1.00) Monolayer Alloys with Controlled Morphology by Physical Vapor Deposition. , 2015, ACS nano.

[30]  S. Pantelides,et al.  Vacancy-induced formation and growth of inversion domains in transition-metal dichalcogenide monolayer. , 2015, ACS nano.

[31]  Michael Brian Whitwick,et al.  Atomic scale microstructure and properties of Se-deficient two-dimensional MoSe2. , 2015, ACS nano.

[32]  Yanguang Li,et al.  Ultrathin MoS2(1–x)Se2x Alloy Nanoflakes For Electrocatalytic Hydrogen Evolution Reaction , 2015 .

[33]  F. Léonard,et al.  Superlinear composition-dependent photocurrent in CVD-grown monolayer MoS2(1-x)Se2x alloy devices. , 2015, Nano letters.

[34]  Yu-Jun Zhao,et al.  Order-disorder phase transitions in the two-dimensional semiconducting transition metal dichalcogenide alloys Mo1−xWxX2 (X = S, Se, and Te) , 2014, Scientific Reports.

[35]  P. Avouris,et al.  Photodetectors based on graphene, other two-dimensional materials and hybrid systems. , 2014, Nature nanotechnology.

[36]  Jr-hau He,et al.  Controllable Synthesis of Band-Gap-Tunable and Monolayer Transition-Metal Dichalcogenide Alloys , 2014, Front. Energy Res..

[37]  Jr-hau He,et al.  Band gap-tunable molybdenum sulfide selenide monolayer alloy. , 2014, Small.

[38]  Yiming Zhu,et al.  Growth of Large‐Area 2D MoS2(1‐x)Se2x Semiconductor Alloys , 2014, Advanced materials.

[39]  S. Louie,et al.  Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. , 2014, Nature materials.

[40]  T. Heinz,et al.  2‐Dimensional Transition Metal Dichalcogenides with Tunable Direct Band Gaps: MoS2(1–x)Se2x Monolayers , 2014, Advanced materials.

[41]  X. Duan,et al.  Growth of alloy MoS(2x)Se2(1-x) nanosheets with fully tunable chemical compositions and optical properties. , 2014, Journal of the American Chemical Society.

[42]  Zhigang Shuai,et al.  Tunable Electronic Properties of Two-Dimensional Transition Metal Dichalcogenide Alloys: A First-Principles Prediction. , 2014, The journal of physical chemistry letters.

[43]  Sefaattin Tongay,et al.  Two-dimensional semiconductor alloys: Monolayer Mo1−xWxSe2 , 2014 .

[44]  Dong Wang,et al.  Tunable band gap photoluminescence from atomically thin transition-metal dichalcogenide alloys. , 2013, ACS nano.

[45]  Junqiao Wu,et al.  Monolayer semiconducting transition metal dichalcogenide alloys: Stability and band bowing , 2013 .

[46]  Ying-Sheng Huang,et al.  Visualization and quantification of transition metal atomic mixing in Mo1−xWxS2 single layers , 2013, Nature Communications.

[47]  Jian Zhou,et al.  Band offsets and heterostructures of two-dimensional semiconductors , 2013 .

[48]  A. Krasheninnikov,et al.  Two-Dimensional Transition Metal Dichalcogenide Alloys: Stability and Electronic Properties. , 2012, The journal of physical chemistry letters.

[49]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[50]  G. Ceder,et al.  Automating First-Principles Phase Diagram Calculations , 2002, cond-mat/0201511.

[51]  L. Hedin,et al.  A local exchange-correlation potential for the spin polarized case. i , 1972 .