Unconventional superconductivity in magic-angle twisted trilayer graphene

[1]  W. Qin,et al.  Critical magnetic fields and electron pairing in magic-angle twisted bilayer graphene , 2021, Physical Review B.

[2]  A. Black‐Schaffer,et al.  Nematic superconductivity in magic-angle twisted bilayer graphene from atomistic modeling , 2021, Communications Physics.

[3]  E. Kaxiras,et al.  Correlated Insulating States and Transport Signature of Superconductivity in Twisted Trilayer Graphene Superlattices. , 2021, Physical review letters.

[4]  Kenji Watanabe,et al.  Pauli-limit violation and re-entrant superconductivity in moiré graphene , 2021, Nature.

[5]  A. Pasupathy,et al.  Electric-field-tunable electronic nematic order in twisted double-bilayer graphene , 2021, 2D Materials.

[6]  T. Taniguchi,et al.  Chern insulators, van Hove singularities and topological flat bands in magic-angle twisted bilayer graphene , 2021, Nature Materials.

[7]  V. Vitale,et al.  Flat band properties of twisted transition metal dichalcogenide homo- and heterobilayers of MoS2, MoSe2, WS2 and WSe2 , 2021, 2D Materials.

[8]  P. Kim,et al.  Electric field–tunable superconductivity in alternating-twist magic-angle trilayer graphene , 2021, Science.

[9]  Kenji Watanabe,et al.  Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene , 2021, Nature.

[10]  Á. Rubio,et al.  Nematicity Arising from a Chiral Superconducting Ground State in Magic-Angle Twisted Bilayer Graphene under In-Plane Magnetic Fields. , 2021, Physical review letters.

[11]  A. Mostofi,et al.  Importance of long-ranged electron-electron interactions for the magnetic phase diagram of twisted bilayer graphene , 2020, Physical Review B.

[12]  A. Georges,et al.  Moiré heterostructures as a condensed-matter quantum simulator , 2020, Nature Physics.

[13]  D. Kennes,et al.  Spin-fluctuation-induced pairing in twisted bilayer graphene , 2020, 2008.12532.

[14]  Kenji Watanabe,et al.  Symmetry-broken Chern insulators and Rashba-like Landau-level crossings in magic-angle bilayer graphene , 2020, Nature Physics.

[15]  Kenji Watanabe,et al.  Nematicity and competing orders in superconducting magic-angle graphene , 2020, Science.

[16]  S. Trebst,et al.  Realization of nearly dispersionless bands with strong orbital anisotropy from destructive interference in twisted bilayer MoS2 , 2020, Nature Communications.

[17]  T. Taniguchi,et al.  Tuning electron correlation in magic-angle twisted bilayer graphene using Coulomb screening , 2020, Science.

[18]  Kenji Watanabe,et al.  Universal moiré nematic phase in twisted graphitic systems , 2020, 2009.11645.

[19]  Kenji Watanabe,et al.  Flavour Hund’s coupling, Chern gaps and charge diffusivity in moiré graphene , 2020, Nature.

[20]  R. Nandkishore,et al.  Parquet renormalization group analysis of weak-coupling instabilities with multiple high-order Van Hove points inside the Brillouin zone , 2020, Physical Review B.

[21]  E. Kaxiras,et al.  Electronic-structure methods for twisted moiré layers , 2020, Nature Reviews Materials.

[22]  Kenji Watanabe,et al.  Strongly correlated Chern insulators in magic-angle twisted bilayer graphene , 2020, Nature.

[23]  Kenji Watanabe,et al.  Untying the insulating and superconducting orders in magic-angle graphene , 2020, Nature.

[24]  Xiaodong Xu,et al.  Superconductivity in metallic twisted bilayer graphene stabilized by WSe2 , 2020, Nature.

[25]  L. Balents,et al.  Superconductivity and strong correlations in moiré flat bands , 2020 .

[26]  P. Kim,et al.  Tunable spin-polarized correlated states in twisted double bilayer graphene , 2020, Nature.

[27]  Kenji Watanabe,et al.  Correlated electronic phases in twisted bilayer transition metal dichalcogenides , 2020, Nature Materials.

[28]  E. Kaxiras,et al.  Twisted Trilayer Graphene: A Precisely Tunable Platform for Correlated Electrons. , 2020, Physical review letters.

[29]  Alice E. A. Allen,et al.  The ONETEP linear-scaling density functional theory program. , 2020, The Journal of chemical physics.

[30]  A. Lopez-Bezanilla,et al.  Electrical band flattening, valley flux, and superconductivity in twisted trilayer graphene , 2020, 2005.02169.

[31]  V. Vitale,et al.  Hartree theory calculations of quasiparticle properties in twisted bilayer graphene , 2020, Electronic Structure.

[32]  A. Geim,et al.  Tunable van Hove Singularities and Correlated States in Twisted Trilayer Graphene , 2020, 2004.12414.

[33]  F. Guinea,et al.  Band structure and insulating states driven by Coulomb interaction in twisted bilayer graphene , 2020, 2004.01577.

[34]  J. Shan,et al.  Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices , 2020, Nature.

[35]  T. Stauber,et al.  Time-reversal symmetry breaking versus chiral symmetry breaking in twisted bilayer graphene , 2020, 2002.12039.

[36]  D. Kennes,et al.  Functional renormalization group for a large moiré unit cell , 2020, 2002.11030.

[37]  Fu-Chun Zhang,et al.  Correlated insulating phases of twisted bilayer graphene at commensurate filling fractions: A Hartree-Fock study , 2020, 2001.02476.

[38]  Kenji Watanabe,et al.  Cascade of electronic transitions in magic-angle twisted bilayer graphene , 2019, Nature.

[39]  Y. Oreg,et al.  Cascade of phase transitions and Dirac revivals in magic-angle graphene , 2019, Nature.

[40]  Kenji Watanabe,et al.  Independent superconductors and correlated insulators in twisted bilayer graphene , 2019, Nature Physics.

[41]  V. Vitale,et al.  Critical role of device geometry for the phase diagram of twisted bilayer graphene , 2019, Physical Review B.

[42]  Kenji Watanabe,et al.  Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices , 2019, Nature.

[43]  E. Kaxiras,et al.  Ultraheavy and ultrarelativistic Dirac quasiparticles in sandwiched graphenes. , 2020, Nano letters.

[44]  J. Zhu,et al.  Intrinsic quantized anomalous Hall effect in a moiré heterostructure , 2019, Science.

[45]  Á. Rubio,et al.  One-dimensional flat bands in twisted bilayer germanium selenide , 2019, Nature Communications.

[46]  Kenji Watanabe,et al.  Correlated states in twisted double bilayer graphene , 2019, Nature Physics.

[47]  Kenji Watanabe,et al.  Strange Metal in Magic-Angle Graphene with near Planckian Dissipation. , 2019, Physical review letters.

[48]  M. Xie,et al.  Nature of the Correlated Insulator States in Twisted Bilayer Graphene. , 2018, Physical review letters.

[49]  Hao Wang,et al.  Soliton superlattices in twisted hexagonal boron nitride , 2019, Nature Communications.

[50]  I. Liu,et al.  Nearly ferromagnetic spin-triplet superconductivity , 2018, Science.

[51]  G. Refael,et al.  Electronic correlations in twisted bilayer graphene near the magic angle , 2019, Nature Physics.

[52]  T. Taniguchi,et al.  Large linear-in-temperature resistivity in twisted bilayer graphene , 2019, Nature Physics.

[53]  T. Taniguchi,et al.  Charge order and broken rotational symmetry in magic-angle twisted bilayer graphene , 2019, Nature.

[54]  T. Taniguchi,et al.  Maximized electron interactions at the magic angle in twisted bilayer graphene , 2018, Nature.

[55]  Kenji Watanabe,et al.  Correlated Insulating States in Twisted Double Bilayer Graphene. , 2019, Physical review letters.

[56]  C. Honerkamp,et al.  Inherited and flatband-induced ordering in twisted graphene bilayers , 2019, Physical Review B.

[57]  Á. Rubio,et al.  Multiflat Bands and Strong Correlations in Twisted Bilayer Boron Nitride: Doping-Induced Correlated Insulator and Superconductor , 2019, Nano letters.

[58]  Kenji Watanabe,et al.  Spectroscopic signatures of many-body correlations in magic-angle twisted bilayer graphene , 2019, Nature.

[59]  R. Valentí,et al.  Internal screening and dielectric engineering in magic-angle twisted bilayer graphene , 2019, Physical Review B.

[60]  Kenji Watanabe,et al.  Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene , 2019, Nature.

[61]  A. Vishwanath,et al.  Magic angle hierarchy in twisted graphene multilayers , 2019, Physical Review B.

[62]  Kenji Watanabe,et al.  Signatures of tunable superconductivity in a trilayer graphene moiré superlattice , 2019, Nature.

[63]  M. Kastner,et al.  Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene , 2019, Science.

[64]  R. Nandkishore,et al.  Chiral twist on the high- Tc phase diagram in moiré heterostructures , 2019, Physical Review B.

[65]  O. Vafek,et al.  Strong Coupling Phases of Partially Filled Twisted Bilayer Graphene Narrow Bands. , 2018, Physical review letters.

[66]  D. Graf,et al.  Tuning superconductivity in twisted bilayer graphene , 2018, Science.

[67]  José A. González,et al.  Kohn-Luttinger Superconductivity in Twisted Bilayer Graphene. , 2018, Physical review letters.

[68]  H. Choi,et al.  Strong electron-phonon coupling, electron-hole asymmetry, and nonadiabaticity in magic-angle twisted bilayer graphene , 2018, Physical Review B.

[69]  F. Guinea,et al.  Electrostatic effects, band distortions, and superconductivity in twisted graphene bilayers , 2018, Proceedings of the National Academy of Sciences.

[70]  E. Kaxiras,et al.  Pressure dependence of the magic twist angle in graphene superlattices , 2018, Physical Review B.

[71]  I. Martin,et al.  Theory of Phonon-Mediated Superconductivity in Twisted Bilayer Graphene. , 2018, Physical review letters.

[72]  J. Lischner,et al.  Strong correlations and d+id superconductivity in twisted bilayer graphene , 2018, Physical Review B.

[73]  Xiao Yan Xu,et al.  Kekulé valence bond order in an extended Hubbard model on the honeycomb lattice with possible applications to twisted bilayer graphene , 2018, Physical Review B.

[74]  P. Phillips,et al.  Doped Twisted Bilayer Graphene near Magic Angles: Proximity to Wigner Crystallization, Not Mott Insulation. , 2018, Nano letters.

[75]  Takashi Taniguchi,et al.  Unconventional superconductivity in magic-angle graphene superlattices , 2018, Nature.

[76]  E. Kaxiras,et al.  Correlated insulator behaviour at half-filling in magic-angle graphene superlattices , 2018, Nature.

[77]  F. Guinea,et al.  Electrically Controllable Magnetism in Twisted Bilayer Graphene. , 2017, Physical review letters.

[78]  Mitchell Luskin,et al.  Twistronics: Manipulating the electronic properties of two-dimensional layered structures through their twist angle , 2016, 1611.00649.

[79]  M. Robbins,et al.  AIREBO-M: a reactive model for hydrocarbons at extreme pressures. , 2015, The Journal of chemical physics.

[80]  Chris-Kriton Skylaris,et al.  A variational method for density functional theory calculations on metallic systems with thousands of atoms. , 2013, The Journal of chemical physics.

[81]  M. Katsnelson,et al.  Optimal Hubbard models for materials with nonlocal Coulomb interactions: graphene, silicene, and benzene. , 2013, Physical review letters.

[82]  M I Katsnelson,et al.  Strength of effective Coulomb interactions in graphene and graphite. , 2011, Physical review letters.

[83]  R. Bistritzer,et al.  Moiré bands in twisted double-layer graphene , 2010, Proceedings of the National Academy of Sciences.

[84]  P. Vargas,et al.  Flat bands in slightly twisted bilayer graphene: Tight-binding calculations , 2010, 1012.4320.

[85]  Sangeeta Sharma,et al.  Electronic structure of turbostratic graphene , 2009, 0910.5811.

[86]  D. Mayou,et al.  Localization of dirac electrons in rotated graphene bilayers. , 2009, Nano letters.

[87]  N. Peres,et al.  Graphene bilayer with a twist: electronic structure. , 2007, Physical review letters.

[88]  V. Crespi,et al.  Registry-dependent interlayer potential for graphitic systems , 2005 .

[89]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[90]  Srivastava,et al.  Electronic structure , 2001, Physics Subject Headings (PhySH).

[91]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[92]  J. Schrieffer,et al.  EFFECT OF FERROMAGNETIC SPIN CORRELATIONS ON SUPERCONDUCTIVITY , 1966 .