Eigenobject-wise saliency detection based on manifold ranking

Abstract Saliency detection that utilizes graph model has achieved considerable progress during the past years. However, few methods consider object cues. We propose a novel manifold ranking based graph model that estimates the saliency of the image elements via their relevances to object seeds. An “eigenimage” selection algorithm dependent on the solved eigenvectors of the normalized Laplacian matrix is proposed to generate the object-wise seeds. Meanwhile, we propose a foreground border blanking approach to settle the failure of boundary prior saliency when object regions touching the border. Extensive experiments on benchmark datasets indicate that our algorithm could further improve the performance of representative graph-based saliency detection methods.

[1]  Denis Simakov,et al.  Summarizing visual data using bidirectional similarity , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[2]  Yizhou Yu,et al.  Visual saliency based on multiscale deep features , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[3]  Huchuan Lu,et al.  Saliency detection via Cellular Automata , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[4]  Pietro Perona,et al.  Graph-Based Visual Saliency , 2006, NIPS.

[5]  Liang Lin,et al.  PISA: Pixelwise Image Saliency by Aggregating Complementary Appearance Contrast Measures with Spatial Priors , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[6]  Bernhard Schölkopf,et al.  Ranking on Data Manifolds , 2003, NIPS.

[7]  Li Xu,et al.  Hierarchical Saliency Detection , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[8]  Frédo Durand,et al.  Learning to predict where humans look , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[9]  Deepu Rajan,et al.  Salient Region Detection by Modeling Distributions of Color and Orientation , 2009, IEEE Transactions on Multimedia.

[10]  David Dagan Feng,et al.  Robust saliency detection via regularized random walks ranking , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[11]  Ying Wu,et al.  A unified approach to salient object detection via low rank matrix recovery , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[12]  S. Süsstrunk,et al.  Frequency-tuned salient region detection , 2009, CVPR 2009.

[13]  Nanning Zheng,et al.  Automatic salient object segmentation based on context and shape prior , 2011, BMVC.

[14]  Huchuan Lu,et al.  Saliency detection via background and foreground seed selection , 2015, Neurocomputing.

[15]  Huchuan Lu,et al.  Deep networks for saliency detection via local estimation and global search , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[16]  Peng Jiang,et al.  Salient Region Detection by UFO: Uniqueness, Focusness and Objectness , 2013, 2013 IEEE International Conference on Computer Vision.

[17]  Chris H. Q. Ding,et al.  A min-max cut algorithm for graph partitioning and data clustering , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[18]  Igor Durdanovic,et al.  Parallel Support Vector Machines: The Cascade SVM , 2004, NIPS.

[19]  Xuelong Li,et al.  Visual-Textual Joint Relevance Learning for Tag-Based Social Image Search , 2013, IEEE Transactions on Image Processing.

[20]  Laurent Itti,et al.  An Integrated Model of Top-Down and Bottom-Up Attention for Optimizing Detection Speed , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[21]  J. A. Hartigan,et al.  A k-means clustering algorithm , 1979 .

[22]  Zhengbing Wang,et al.  Saliency detection integrating both background and foreground information , 2016, Neurocomputing.

[23]  Mubarak Shah,et al.  Visual attention detection in video sequences using spatiotemporal cues , 2006, MM '06.

[24]  Huchuan Lu,et al.  Saliency Detection via Graph-Based Manifold Ranking , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[25]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[26]  Hong Qiao,et al.  Robust object tracking guided by top-down spectral analysis visual attention , 2015, Neurocomputing.

[27]  Shi-Min Hu,et al.  Sketch2Photo: internet image montage , 2009, ACM Trans. Graph..

[28]  Gayoung Lee,et al.  Deep Saliency with Encoded Low Level Distance Map and High Level Features , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[29]  Lei Guo,et al.  Saliency detection by selective color features , 2016, Neurocomputing.

[30]  Christof Koch,et al.  A Model of Saliency-Based Visual Attention for Rapid Scene Analysis , 2009 .

[31]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[32]  Chih-Jen Lin,et al.  LIBLINEAR: A Library for Large Linear Classification , 2008, J. Mach. Learn. Res..

[33]  Yael Pritch,et al.  Saliency filters: Contrast based filtering for salient region detection , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[34]  Philip H. S. Torr,et al.  BING: Binarized normed gradients for objectness estimation at 300fps , 2014, Computational Visual Media.

[35]  Huchuan Lu,et al.  CNN for saliency detection with low-level feature integration , 2017, Neurocomputing.

[36]  Huchuan Lu,et al.  Saliency detection based on integration of boundary and soft-segmentation , 2012, 2012 19th IEEE International Conference on Image Processing.

[37]  Jonathan Warrell,et al.  Proposal generation for object detection using cascaded ranking SVMs , 2011, CVPR 2011.

[38]  Mikhail Belkin,et al.  Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering , 2001, NIPS.

[39]  Huchuan Lu,et al.  Salient object detection via global and local cues , 2015, Pattern Recognit..

[40]  Shi-Min Hu,et al.  Global contrast based salient region detection , 2011, CVPR 2011.

[41]  Yongdong Zhang,et al.  AutoBD: Automated Bi-Level Description for Scalable Fine-Grained Visual Categorization , 2018, IEEE Transactions on Image Processing.

[42]  Vibhav Vineet,et al.  Efficient Salient Region Detection with Soft Image Abstraction , 2013, 2013 IEEE International Conference on Computer Vision.

[43]  Ali Borji,et al.  Salient object detection: A survey , 2014, Computational Visual Media.

[44]  Chun Qi,et al.  Saliency detection based on global and local short-term sparse representation , 2016, Neurocomputing.

[45]  Gabriela Csurka,et al.  A framework for visual saliency detection with applications to image thumbnailing , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[46]  Liqing Zhang,et al.  Saliency Detection: A Spectral Residual Approach , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[47]  Bernhard Schölkopf,et al.  Learning with Local and Global Consistency , 2003, NIPS.

[48]  Yongdong Zhang,et al.  Coarse-to-Fine Description for Fine-Grained Visual Categorization , 2016, IEEE Transactions on Image Processing.

[49]  James M. Rehg,et al.  The Secrets of Salient Object Segmentation , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[50]  Nanning Zheng,et al.  Learning to Detect a Salient Object , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[51]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[52]  Shang-Hong Lai,et al.  Fusing generic objectness and visual saliency for salient object detection , 2011, 2011 International Conference on Computer Vision.

[53]  Hong Zhang,et al.  Facial expression recognition via learning deep sparse autoencoders , 2018, Neurocomputing.

[54]  Yanyun Tao,et al.  Salient object detection via color and texture cues , 2017, Neurocomputing.

[55]  Qiaosong Wang,et al.  GraB: Visual Saliency via Novel Graph Model and Background Priors , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[56]  Xiaogang Wang,et al.  Saliency detection by multi-context deep learning , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[57]  Sabine Süsstrunk,et al.  Salient Region Detection and Segmentation , 2008, ICVS.