Do organophosphate-based traps reduce control efficiency of resistant tephritid flies?

[1]  B. McPheron,et al.  Fruit Fly Pests , 2016 .

[2]  R. Messing,et al.  Sexual communication and related behaviours in Tephritidae: current knowledge and potential applications for Integrated Pest Management , 2014, Journal of Pest Science.

[3]  N. Manoukis,et al.  An agent-based simulation of extirpation of Ceratitis capitata applied to invasions in California , 2013, Journal of Pest Science.

[4]  A. Clarke,et al.  Pupal diapause development and termination is driven by low temperature chilling in Bactrocera minax , 2013, Journal of Pest Science.

[5]  E. Jang,et al.  Performance of Methyl Eugenol + Matrix + Toxicant Combinations Under Field Conditions in Hawaii and California for Trapping Bactrocera dorsalis (Diptera:Tephritidae) , 2013, Journal of economic entomology.

[6]  G. Smagghe,et al.  The non-target impact of spinosyns on beneficial arthropods. , 2012, Pest management science.

[7]  M. Chou,et al.  Monitoring Resistance to Spinosad in the Melon Fly (Bactrocera cucurbitae) in Hawaii and Taiwan , 2012, TheScientificWorldJournal.

[8]  E. A. Back,et al.  The Mediterranean fruit fly in Hawaii , 2012 .

[9]  E. Jang Effectiveness of plastic matrix lures and traps against Bactrocera dorsalis and Bactrocera cucurbitae in Hawaii , 2011 .

[10]  C. Niu,et al.  Population dynamics, phenology, and overwintering of Bactrocera dorsalis (Diptera: Tephritidae) in Hubei Province, China , 2011, Journal of Pest Science.

[11]  Ling Zeng,et al.  Insecticide resistance of the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), in mainland China. , 2011, Pest management science.

[12]  A. Gutierrez,et al.  Assessing the invasive potential of the Mediterranean fruit fly in California and Italy , 2011, Biological Invasions.

[13]  J. Terblanche,et al.  Thermal variability alters climatic stress resistance and plastic responses in a globally invasive pest, the Mediterranean fruit fly (Ceratitis capitata) , 2010 .

[14]  F. Zalom,et al.  Spinosad resistance development in wild olive fruit fly Bactrocera oleae (Diptera: Tephritidae) populations in California. , 2010, Pest management science.

[15]  M. Chou,et al.  Potential for insecticide resistance in populations of Bactrocera dorsalis in Hawaii: spinosad susceptibility and molecular characterization of a gene associated with organophosphate resistance , 2010 .

[16]  Marshall W. Johnson,et al.  Olive fruit fly: managing an ancient pest in modern times. , 2010, Annual review of entomology.

[17]  J. Stark,et al.  Captures in Methyl Eugenol and Cue-Lure Detection Traps With and Without Insecticides and With a Farma Tech Solid Lure and Insecticide Dispenser , 2009, Journal of economic entomology.

[18]  T. Shelly,et al.  Re‐examining the relationship between sexual maturation and age of response to methyl eugenol in males of the oriental fruit fly , 2008 .

[19]  R. Feyereisen,et al.  Mechanisms of resistance to malathion in the medfly Ceratitis capitata. , 2008, Insect biochemistry and molecular biology.

[20]  F. Ortego,et al.  Resistance to Malathion in Field Populations of Ceratitis capitata , 2007, Journal of economic entomology.

[21]  E. Jang,et al.  Test of Effectiveness of Newly Formulated Plastic Matrix with Methyl Eugenol for Monitoring Bactrocera dorsalis (Hendel) Populations , 2006 .

[22]  F. Frati,et al.  Geographical distribution and evolutionary history of organophosphate-resistant Ace alleles in the olive fly (Bactrocera oleae). , 2006, Insect biochemistry and molecular biology.

[23]  Wen-Jer Wu,et al.  Mutations in the acetylcholinesterase gene of Bactrocera dorsalis associated with resistance to organophosphorus insecticides. , 2006, Insect biochemistry and molecular biology.

[24]  R. W. Janes,et al.  Detection of resistance-associated point mutations of organophosphate-insensitive acetylcholinesterase in the olive fruit fly, Bactrocera oleae (Gmelin) , 2005 .

[25]  K. Tan,et al.  Male Sex Pheromonal Components Derived from Methyl Eugenol in the Hemolymph of the Fruit Fly Bactrocera papayae , 2004, Journal of Chemical Ecology.

[26]  Wen-Jer Wu,et al.  Resistance and Synergistic Effects of Insecticides in Bactrocera dorsalis (Diptera: Tephritidae) in Taiwan , 2004, Journal of economic entomology.

[27]  D. Fournier,et al.  Acetylcholinesterase alterations reveal the fitness cost of mutations conferring insecticide resistance , 2004, BMC Evolutionary Biology.

[28]  C. D. S. Tomlin,et al.  The Pesticide Manual , 2003 .

[29]  S. Wee,et al.  Comparative sensitivity to and consumption of methyl eugenol in three Bactrocera dorsalis (Diptera: Tephritidae) complex sibling species , 2002, CHEMOECOLOGY.

[30]  J. Hemingway,et al.  Resistance‐associated point mutations of organophosphate insensitive acetylcholinesterase, in the olive fruit fly Bactrocera oleae , 2002, Insect molecular biology.

[31]  J. Hemingway,et al.  Altered Acetylcholinesterase Confers Organophosphate Resistance in the Olive Fruit Fly Bactrocera oleae , 2001 .

[32]  B. Sauphanor,et al.  Is attract-and-kill technology potent against insecticide-resistant Lepidoptera? , 2001, Pest management science.

[33]  D. Fournier,et al.  A High Number of Mutations in Insect Acetylcholinesterase May Provide Insecticide Resistance , 2000 .

[34]  Hsu JuChun,et al.  Insecticide susceptibility of the oriental fruit fly (Bactrocera dorsalis (Hendel)) (Diptera: Tephritidae) in Taiwan. , 2000 .

[35]  K. Tan,et al.  Sex Pheromone and Mating Competition after Methyl Eugenol Consumption in the Bactrocera dorsalis Complex , 1996 .

[36]  T. Shelly CONSUMPTION OF METHYL EUGENOL BY MALE BACTROCERA DORSALIS (DIPTERA: TEPHRITIDAE): LOW INCIDENCE OF REPEAT FEEDING , 1994 .

[37]  T. Shelly,et al.  Chemically Mediated Mating Success in Male Oriental Fruit Flies (Diptera: Tephritidae) , 1994 .

[38]  I. White,et al.  Fruit Flies of Economic Significance: Their Identification and Bionomics , 1992 .

[39]  J. Sivinski Fruit flies : their biology, natural enemies and control , 1992 .

[40]  Robert L. Metcalf,et al.  Chemical ecology of Dacinae fruit flies (Diptera: Tephritidae). , 1990 .

[41]  G. Fitt THE INFLUENCE OF AGE, NUTRITION AND TIME OF DAY ON THE RESPONSIVENESS OF MALE DACUS OPILIAE TO THE SYNTHETIC LURE, METHYL EUGENOL , 1981 .

[42]  R. M. Kobayashi,et al.  Laboratory Assessment of 73 Insecticides Against the Oriental Fruit Fly, Melon Fly, and Mediterranean Fruit Fly , 1973 .

[43]  D. Chambers,et al.  Treating tephritids with attractants to enhance their effectiveness in sterile-release programs , 1972 .