Metric propositional neighborhood logics on natural numbers

Interval logics formalize temporal reasoning on interval structures over linearly (or partially) ordered domains, where time intervals are the primitive ontological entities and truth of formulae is defined relative to time intervals, rather than time points. In this paper, we introduce and study Metric Propositional Neighborhood Logic (MPNL) over natural numbers. MPNL features two modalities referring, respectively, to an interval that is “met by” the current one and to an interval that “meets” the current one, plus an infinite set of length constraints, regarded as atomic propositions, to constrain the length of intervals. We argue that MPNL can be successfully used in different areas of computer science to combine qualitative and quantitative interval temporal reasoning, thus providing a viable alternative to well-established logical frameworks such as Duration Calculus. We show that MPNL is decidable in double exponential time and expressively complete with respect to a well-defined sub-fragment of the two-variable fragment $${{\rm FO}^2[\mathbb{N},=,<,s]}$$ of first-order logic for linear orders with successor function, interpreted over natural numbers. Moreover, we show that MPNL can be extended in a natural way to cover full $${{\rm FO}^2[\mathbb{N},=,<,s]}$$, but, unexpectedly, the latter (and hence the former) turns out to be undecidable.

[1]  Alan Bundy,et al.  Constructing Induction Rules for Deductive Synthesis Proofs , 2006, CLASE.

[2]  Davide Bresolin,et al.  Right Propositional Neighborhood Logic over Natural Numbers with Integer Constraints for Interval Lengths , 2009, 2009 Seventh IEEE International Conference on Software Engineering and Formal Methods.

[3]  Davide Bresolin,et al.  A Tableau-Based System for Spatial Reasoning about Directional Relations , 2009, TABLEAUX.

[4]  A. Montanari,et al.  Executing Metric Temporal Logic , 1997 .

[5]  Michael R. Hansen,et al.  Decidability of a Hybrid Duration Calculus , 2007, HyLo@FLoC.

[6]  Michael Mortimer,et al.  On languages with two variables , 1975, Math. Log. Q..

[7]  Juan Carlos Augusto,et al.  The Use of Temporal Reasoning and Management of Complex Events in Smart Homes , 2004, ECAI.

[8]  Davide Bresolin,et al.  A Decidable Spatial Generalization of Metric Interval Temporal Logic , 2010, 2010 17th International Symposium on Temporal Representation and Reasoning.

[9]  Valentin Goranko,et al.  Propositional Interval Neighborhood Temporal Logics , 2003, J. Univers. Comput. Sci..

[10]  Thomas A. Henzinger,et al.  A really temporal logic , 1994, JACM.

[11]  Davide Bresolin,et al.  An Optimal Decision Procedure for Right Propositional Neighborhood Logic , 2006, Journal of Automated Reasoning.

[12]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[13]  Valentin Goranko,et al.  Model theory of modal logic , 2007, Handbook of Modal Logic.

[14]  Yde Venema,et al.  A Modal Logic for Chopping Intervals , 1991, J. Log. Comput..

[15]  Michael R. Hansen,et al.  Decidability and Undecidability Results for Duration Calculus , 1993, STACS.

[16]  Yoav Shoham,et al.  A propositional modal logic of time intervals , 1991, JACM.

[17]  Mounir Mokhtari,et al.  Networking and Communication in Smart Home for People with Disabilities , 2004, ICCHP.

[18]  Davide Bresolin,et al.  Metric Propositional Neighborhood Logics: Expressiveness, Decidability, and Undecidability , 2010, ECAI.

[19]  Luis Fariñas del Cerro,et al.  A mixed decision method for duration calculus , 2000, J. Log. Comput..

[20]  Yoram Hirshfeld,et al.  Logics for Real Time: Decidability and Complexity , 2004, Fundam. Informaticae.

[21]  M. de Rijke,et al.  Two-sorted Metric Temporal Logics , 1997, Theor. Comput. Sci..

[22]  Michael R. Hansen,et al.  Duration calculus: Logical foundations , 1997, Formal Aspects of Computing.

[23]  Yuri Gurevich,et al.  The Classical Decision Problem , 1997, Perspectives in Mathematical Logic.

[24]  Zhou Chaochen,et al.  Duration Calculus: A Formal Approach to Real-Time Systems , 2004 .

[25]  Joël Ouaknine,et al.  Some Recent Results in Metric Temporal Logic , 2008, FORMATS.

[26]  Carlo Combi,et al.  Temporal Constraints with Multiple Granularities in Smart Homes , 2006, Designing Smart Homes.

[27]  Martin Otto,et al.  Two variable first-order logic over ordered domains , 2001, Journal of Symbolic Logic.

[28]  A. Wilkie THE CLASSICAL DECISION PROBLEM (Perspectives in Mathematical Logic) By Egon Börger, Erich Grädel and Yuri Gurevich: 482 pp., DM.158.–, ISBN 3 540 57073 X (Springer, 1997). , 1998 .

[29]  Davide Bresolin,et al.  Propositional interval neighborhood logics: Expressiveness, decidability, and undecidable extensions , 2009, Ann. Pure Appl. Log..

[30]  Simeon Veloudis,et al.  Duration Calculus in the Specification of Safety Requirements , 1998, FTRTFT.

[31]  C. A. R. Hoare,et al.  A Calculus of Durations , 1991, Inf. Process. Lett..

[32]  Phokion G. Kolaitis,et al.  On the Decision Problem for Two-Variable First-Order Logic , 1997, Bulletin of Symbolic Logic.

[33]  Benjamin Charles Moszkowski Reasoning about Digital Circuits , 1983 .

[34]  Davide Bresolin,et al.  An Optimal Tableau-Based Decision Algorithm for Propositional Neighborhood Logic , 2007, STACS.

[35]  Davide Bresolin,et al.  Decidable and Undecidable Fragments of Halpern and Shoham's Interval Temporal Logic: Towards a Complete Classification , 2008, LPAR.

[36]  Ron Koymans,et al.  Specifying real-time properties with metric temporal logic , 1990, Real-Time Systems.

[37]  Manuel Campos,et al.  Quality Checking of Medical Guidelines Using Interval Temporal Logics: A Case-Study , 2009, IWINAC.

[38]  Frank Wolter,et al.  Handbook of Modal Logic , 2007, Studies in logic and practical reasoning.

[39]  Richard Spencer-Smith,et al.  Modal Logic , 2007 .

[40]  Henry A. Kautz,et al.  Integrating Metric and Qualitative Temporal Reasoning , 1991, AAAI.

[41]  Michael R. Hansen,et al.  Duration Calculus: A Formal Approach to Real-Time Systems (Monographs in Theoretical Computer Science. an Eatcs Seris) , 2004 .